Managerial Ownership and Firm Value: Evidence from Japan¹

Toshiaki Yamanaka²

September 2020

Abstract

By using nearly 60,000 firm-years of Japanese firms from 2000 to 2017, we find that, in general, the relation between a firm's managerial ownership and Tobin's q is positive. The positive relation is robust to both measurement error and the influence of outliers, and it is due to the subset of young firms with high managerial ownership that have higher Tobin's q. The general reduction in managerial ownership after an IPO is the primary factor contributing to the change in managerial ownership. Our results suggest that the fraction of newly listed firms is a decisive factor in the relation between managerial ownership and firm value. When we restrict our sample to larger firms, a hump-shaped relation is observed, at which point our analysis is consistent with the prior literature on American firms. For firm-years in the low liquidity bracket, the relation is inversely hump-shaped and mostly negative. The firm-years in the low liquidity bracket, at which point American and Japanese firms are similar.

JEL classification: G30, G32

Keywords: Managerial ownership, firm value, IPO, liquidity, dual-class firms, Japan

¹ The author thanks Anthony J. Casey, Hiroyuki Egami, Daisuke Hirata, Yoshio Nozawa (discussant at the Nippon [Japanese] Finance Association 2020 Annual Meeting), Yoshiaki Ogura (discussant at the Japanese Economic Association 2020 Spring Meeting), Peng Xu and the participants of these meetings and the Workshop for Economic Analysis of Law (in Japan) for their helpful comments. For the American Law and Economics Association 2020 Annual Meeting, accepted papers were circulated for comments, and the author also received helpful comments from Colleen Honigsberg, J. Mark Ramseyer and Holger Spamann. This research is supported by the Graduate Schools for Law and Politics at the University of Tokyo and by a grant from the Japan Society for the Promotion of Science (grant number: 19K13555).

² Formerly of the University of Tokyo. E-mail address: yamanaka [at] caa.columbia.edu

1. Introduction

In the United States, in the corporate finance literature, it is well known that Tobin's q first increases, then declines, and finally rises as ownership by corporate directors increases (Morck, Shleifer and Vishny 1988, p. 293, hereafter MSV). Based on a larger sample, McConnell and Servaes (1990, p. 595) also find a curvilinear relation between the fraction of managerial ownership and Tobin's q. Holderness, Kroszner and Sheehan (1999, p. 465) show that the shape of the relation between firm performance and the level of managerial ownership in 1935 is similar to what MSV find with 1980 data. Kim and Lu (2011, p. 289) demonstrate that the relation between CEO ownership and Tobin's q is hump-shaped when external governance is weak, but the relation is insignificant when external governance is strong.

The relation between managerial ownership and Tobin's q is often analyzed by cross-sectional regressions without controlling for firm fixed effects. In the beginning, Himmelberg, Hubbard and Palia (1999, p. 353, hereafter HHP) document that after controlling for both observed firm characteristics and firm fixed effects, they cannot conclude (econometrically) that changes in managerial ownership affect Tobin's q. In commenting on HHP, Zhou (2001, pp. 559, 566) points out that because managerial ownership typically changes slowly from year to year within a firm, fixed effects estimators may not detect an effect of ownership on performance, and if ownership is important to managerial incentives, its effect on performance would necessarily show up in cross-sectional tests. More recently, by using more than 50,000 firm-years from 1988 to 2015, Fabisik, Fahlenbrach, Stulz and Taillard (2018, hereafter FFST) show that the empirical relation between a firm's managerial ownership and Tobin's q is systematically negative. Specifically, by adopting adjusted Fama-MacBeth (hereafter FM) regressions (Fama and MacBeth 1973), FFST (pp. 27-28) conclude that the relation between managerial ownership and Tobin's q documented in the literature does not hold for larger samples that include a greater number of smaller firms, even though for the subset of the largest firms, their estimates are similar to those found in MSV and McConnell and Servaes (1990).

There has also been discussion regarding whether the relation is causal. By examining a sample of firms adopting target ownership plans, Core and Larcker (2002, p. 317) find that the required increases in the level of managerial ownership result in improvements in firm performance. Coles, Lemmon and Meschke (2012, p. 149) conclude that proxy variables, fixed effects and instrumental variables do not generally provide reliable solutions to simultaneity bias. In this setting, Li, Sun and Yannelis (2018, p. 1) identify the causal effects by exploiting the 2003 tax cut, which increased net-of-tax managerial ownership, and uncover a hump-shaped improvement in Tobin's q as a response to the level of managerial ownership.

In this paper, we focus on Japanese firms, in an effort to further clarify the relation between managerial ownership and firm value, and to examine the relevance and external validity of theories and empirical evidence from American firms. In Japan, the number of equities (both common equities and dual-class stocks) owned by directors and officers (*shikkōyaku*) is disclosed on an individual basis as an item in Annual Securities Reports (*yūkashōken hōkokusho*, Japan's version of the Form 10-K), and the information about managerial common equity ownership is commercially available as data (Nikkei Directors and Officers data (*yakuin* data), see Appendix A) from the fiscal year ended in March 2003 to the present for all firms listed on a stock exchange in Japan.³ To the best of our knowledge, our paper is the first to analyze Japanese firms in large datasets and to clarify the relevance and external validity of theories and empirical evidence from American firms in the context of the relation between managerial ownership and firm value.⁴

The paper proceeds as follows. In Section 2, we introduce and present the institutional setting and data, and summary statistics. We consider determinants of managerial ownership in Section 3. Then, in Section 4, we report that in Japanese firms, the empirical relation between

³ FFST (p. 5) collect data from Compact Disclosure for the period from 1988 to 2003 and download and parse all proxy materials and information statements from the EDGAR website for the period from 2004 to 2016.

⁴ Kaplan (1994, p. 535 Table 4, pp. 539-541) analyzes the director and officer ownership in relation to cash compensation. Weakly related literature includes Morck, Nakamura and Shivdasani (2000) and Franks, Mayer and Miyajima (2014).

managerial ownership and Tobin's q is statistically significantly positive in general. In Section 5, we clarify the external validities of theories and empirical evidence from American firms. We conclude in Section 6.

2. Data and summary statistics

- 2-1. Data
 - 2-1-1. Managerial ownership

We first describe our data in relation to the institutional setting in Japan. In Japan, the number of equities owned by directors and officers is disclosed on an individual basis under the "Cabinet Office Ordinance on the Disclosure of Corporate Affairs, etc." The amount of stock options granted to directors and officers, however, is not disclosed.⁵ Traditionally, ownership did not include shares held by relatives and trusts of the directors (Kaplan 1994, p. 539). However, by the amendment of the Ordinance on March 31, 2005 (effective from April 1, 2005 to the present), ownership is changed to a substantial basis, which includes the shares for which the director or officer is substantially able to exercise their voting rights and to receive dividends substantially.⁶

For determining the amount of common equity outstanding as a denominator for managerial ownership fraction (m), we use common equity outstanding as of the date on which an Annual Securities Report is submitted.⁷

⁵ Therefore, Kato, Lemmon, Luo and Schallheim (2005, p. 439) analyze stock option plan adoptions by using the sample provided by Daiwa Securities. When analyzing the relation between managerial ownership and firm value, it is common not to include options that have been granted but whose earliest exercise date is more than 60 days from the date of the proxy (Holderness, Kroszner and Sheehan 1999, p. 449; FFST pp. 4-5).

⁶ The findings reported in our paper hold even when we start our sample period from April 2005, and they are robust to the point in the text (for other robustness tests, see Section 4-3).

⁷ Different from American firms, Japanese firms generally do not specify the record date of managerial ownership. Japanese law ("Cabinet Office Ordinance on the Disclosure of Corporate Affairs, etc.") generally defines the information on managers as of the date of submitting an Annual Securities Report, but the record date of managerial ownership appears not to be explicitly clarified. However, several firms voluntarily report that the date is the same as that of submission. For that date, we use Nikkei NEEDS Financial Quest data (A01071 [reporting date

2-1-2. Sample periods and firms

We start our sample period from fiscal year 2000.⁸ To do so, we hand-collect Annual Securities Reports from PRONEXUS' eol database for fiscal years 2000 to 2002 (specifically, for fiscal years that ended from April 2000 to February 2003, which are not covered in the Nikkei Directors and Officers data) and obtain data on managerial ownership for the period.⁹ Our sample period ends in fiscal year 2017 (March 2018 at the latest firm).

We set our potential sample firms as all those listed on a stock exchange in Japan during the sample period. Specifically, we obtain potential firm-years by combining Nikkei NEEDS Financial Quest (hereafter FQ) data, which covers all Annual Securities Reports (except for those submitted by foreign firms), and the stock price data provided by Financial Data Solutions (hereafter FDS) to confirm that a firm is listed on the date on which its fiscal year ends. This leaves us with 66,786 potential firm-years.

Next, we exclude 2,080 firm-years belonging to financial firms (Tokyo Stock Exchange (hereafter TSE) industry codes: 7050, 7100, 7150 and 7200), utilities (4050) or investment corporations (the code is missing).¹⁰ We also eliminate 195 firm-years in which a

[/] scheduled reporting date] and A01037 [annual shareholders' meeting date] when it is missing). Listed firms typically submit an Annual Securities Report immediately after an annual general meeting, which is generally about three months after the fiscal year-end date. Our approach is consistent with the past literature on American firms (Fahlenbrach and Stulz 2009, p. 346; FFST p. 6) in that the fiscal year-end date is prior to the record date or the submission date, but the time lag between the two is larger for Japanese firms than for American firms.

⁸ For the entire sample firms, the fiscal year ends on March 31 for approximately 70%, December 31 for approximately 8% and February 28 (or 29) for approximately 6%. Considering these facts, the sample firms are categorized into each year group according to the month in which their fiscal year ends. For example, the firms whose fiscal years end in April 2000 to March 2001 are categorized in the same year group 2000.

⁹ We first apply an OCR (optical character recognition) software to the documents and then collect information on managerial ownership by using a VBA (Visual Basic for Applications) algorithm we develop. The algorithm appears more effective than that from Python programming in the context where Japanese letters are analyzed. We also verify the information with the original documents when errors are generated by the OCR software.

¹⁰ We obtain historical TSE industry codes of a firm from FDS Japanese Listed Stocks Monthly Return Data (code: TSE33). The codes are assigned by Securities Identification Code

firm changes the month in which its fiscal year ends and it does not reach 12 months. We remove firm-years when at least one of the following variables is missing: managerial ownership (m), Tobin's q (see Appendix B), sales, operating income, tangible assets and capital expenditure (see Appendix A). Finally, we weed out dual-class firms (see Appendix C).¹¹ As a result, we obtain a sample of 59,064 firm-years for 4,905 unique Japanese listed firms from 2000 to 2017.

2-1-3. Firm value, past liquidity and other variables

We adopt Tobin's *q* as a proxy for firm value, which is conventional (for the estimation, see Appendix B). We use both Amihud's (2002, p. 34) and Fong, Holden and Trzcinka's (2017, p. 1362, hereafter FHT) measures as a proxy for illiquidity (see Appendix A). Most of the other variables adopted in our paper follow MSV, McConnell and Servaes (1990), HHP, Fahlenbrach and Stulz (2009, hereafter FS) and FFST (for the other variables, see Appendix A).¹²

Committee, and available for all listed firms (except for investment corporations, etc.) on a stock exchange in Japan as well as those listed on TSE.

¹¹ To issue dual-class stocks, Japanese firms are required to note this in their charters under Japan's Companies Act. We obtain listed firms' charters from PRONEXUS' eol database for the sample period, apply an OCR software, and then collect information about whether a firm is a dual-class firm by applying our algorithm to search for the word (*shuruikabu*), which expresses dual-class stocks. The years succeeding the change to a dual-class firm are excluded unless the firm is specified as a non-dual-class firm by confirming that the word is not included in its charter. We identify 899 firm-years using the algorithm. Dual-class stock separates cash-flow rights from voting rights (Gompers, Ishii and Metrick 2010), and dual-class firms are commonly excluded in the literature in the context (Fahlenbrach and Stulz 2009, p. 346). During the sample period, less than 3% of the observations in a year are removed as dual-class firms (Appendix C(a)), which have statistically significant characteristics (Appendix C(b)). For example, dual-class firms have significantly higher book value of assets and higher ratio of long-term debt to assets than single-class firms (Appendix C(b)).

¹² As is common in the literature, we do not control governance mechanisms by using corporate governance indices, such as G Index (Gompers, Ishii and Metrick 2003) or E Index (Bebchuk, Cohen and Ferrell 2009). Li, Sun and Yannelis (2018, p. 45 Table 8) analyze interaction with alternative governance channels by applying these indices.

2-2. Summary statistics

We first report the summary statistics for the variables adopted in the analysis in Table 1(A). In our sample, the mean and median managerial ownership fractions (*m*) are 8.8% and 2.0%, respectively.¹³ This suggests that the distribution is also skewed in Japan as well as in the U.S. (MSV p. 297 Table 1; Li, Sun and Yannelis 2018, p. 7). Those fractions are considerably lower than those in the U.S. (FFST p. 47 Table 1).

Second, we also report the mean values of Tobin's q, grouped by level of managerial ownership in Table 1(B). In contrast to American firms (MSV pp. 297-298 Table 1), mean values of Tobin's q in all firms are slightly higher when managerial ownership (m) is 25% or more (Table 1(B)(a)). This is due to the subset of sample firms called young firms (Table 1(B)(c)), rather than named mature firms (Table 1(B)(d)).¹⁴

Finally, summary statistics by fiscal year are provided in Table 1(C). Different from American firms (FFST pp. 9, 47 Table 1), it is difficult to discern a clear pattern in the mean and median managerial ownership (m) in all firms over the sample period (Table 1(C)(a)). This is also relevant to 500 largest firms (Table 1(C)(b)).¹⁵ The 500 largest firms appear to be listed for a longer period than all firms and are less illiquid in terms of both Amihud and FHT measures

¹³ We define a CEO as a director or officer who has the largest ownership fraction for a firm in each year among those who have the title to represent the firm (when two or more are observed, whose term of office as a director or officer is the longest), and find that the mean and median managerial ownership fraction by the single CEO are 6.1% and 0.6%, respectively, suggesting that a considerable amount of managerial ownership is due to the single CEO. Next, we confirm that the results reported in our paper are robust to the effects by corporate governance changes during the sample period. Specifically, numerous directors who do not have the title to represent the firm are changed to employees (whose equity ownership is generally not disclosed and thus not included in our *m* after the change) and a number of statutory auditors (whose ownership is not included in our *m*) become outside directors (whose equity holdings are covered) during the sample period. However, our findings in the paper generally do not meaningfully change even when we adopt the single CEO's ownership fraction as *m*, and they are robust to the effects by such changes in corporate governance.

¹⁴ We divide the sample into two subsets according to the years for which a firm is listed, which is expressed by the variable *years listed* (see Appendix A). A firm-year observation is categorized as either young firms when *years listed* is less than 10 (years), or mature firms when it is 10 or more.

¹⁵ 500 largest firms are selected from the sample in each year in terms of sales.

(Tables 1(C)(a) and 1(C)(b)). Both illiquidity measures significantly decline during the sample period but spiked during the financial crisis 2007-2009, at which point the results are similar between American and Japanese firms (FFST pp. 9-10, 47 Table 1; our Tables 1(C)(a), 1(C)(b), 1(C)(c) and 1(C)(d)). Although mature firms by definition are listed for a longer period, they are not necessarily less illiquid than young firms in both measures depending on a fiscal year (Tables 1(C)(d) and 1(C)(c), respectively).

3. Determinants of managerial ownership

- 3-1. Determinants of ownership level
 - 3-1-1. Empirical methodology

The determinants of managerial ownership are reported in this section. To do so, we first follow HHP's (pp. 362-366) approach. Specifically, as in HHP (p. 366), we adopt the following expression for managerial ownership as a baseline model:

$$m_{it} = f(LN(S)_{it}, (K/S)_{it}, RDK_{it}, RDUM_{it}, (A/K)_{it}, ADUM_{it}, (I/K)_{it}, (Y / S)_{it}, SIGMA_{it}, SIDGUM_{it}) + u_i + \eta_{it}$$

$$(1)$$

where *i* and *t* represent the firm and time, respectively, u_i is the firm-specific effect, and η_{it} is the error term. The corresponding variables are described in Appendix A.

3-1-2. Determinants of ownership level

Our estimates of the determinants of managerial ownership (m) are reported in Table 2. Following Demsetz and Lehn (1985, p. 1163), *m* is transformed into LN(m/(1-m)) as the dependent variable. As in HHP (p. 368 Table 4(A)), in specifications considering firm fixed effects (columns (3) to (5) in our Table 2), we control for the unobserved firm heterogeneity expressed by u_i in Eq. (1).

In the specification using pooled data for all firms, increases in firm size (LN(S)) are

associated with an increase in managerial ownership (m) at the 5% significance level (column (1) in Table 2), which is also relevant to those whose industry fixed effects are controlled (column (2)). These results are different from the findings reported for American firms (HHP pp. 366, 368 Table 4), however, when we restrict our sample to the 500 largest firms, increases in firm size (*LN(S)*) are associated with a reduction in managerial ownership (m) at the 10% significance level (column (4) in our Table 2).

In the specification for all firms controlling for firm fixed effects, although the coefficients of *SIGMA* and *ADUM* are statistically significant, none of the other explanatory variables are statistically significant at the 10% level (column (3) in the same table). The inclusion of firm fixed effects changes the significance of most explanatory variables (columns (1) and (3)), and thus the unobserved firm characteristics are correlated with the observed characteristics, at which point the results are similar to those reported for American firms (HHP p. 368 Table 4, p. 370).

3-1-3. Effects on managerial ownership

The effects of past stock liquidity on managerial ownership are reported in Table 3. We estimate both adjusted FM and OLS regressions, and the specifications in the table are comparable to those of FFST (p. 53 Table 6). For adjusted FM regressions, the reported parameter estimates are time series averages of yearly regression coefficient estimates. Since the existence of autocorrelation in the parameter estimates from year-by-year regressions would bias the statistical significance, following Chakravarty, Gulen and Mayhew (2004, pp. 1249-1250 note 9), we adjust the standard errors for first-order autocorrelation by multiplying the standard errors of the average parameters by $\sqrt{(1 + \rho)/(1 - \rho)}$, where ρ is the first-order autocorrelation in yearly parameter estimates (hereafter the same applies to all adjusted FM regressions in our paper).¹⁶

¹⁶ Petersen (2009, p. 465) notes that many authors have suggested adjusting the standard errors for the estimated first-order autocorrelation of the estimated slope coefficients, and the proposed

Both *high liquidity years (FHT)* and *low liquidity years (FHT)* are statistically significant at the 1% level, no matter whether year fixed effects are controlled (columns (5) to (8) in our Table 3), and the positive or negative signs of the coefficients are opposite to those reported for American firms (FFST p. 53, columns (5) to (8) in Table 6). Our results suggest that Japanese firms with a history of high or low liquidity have significantly higher or lower managerial ownership (m), respectively, which is in marked contrast to the findings on American firms.

3-2. Ownership structure following an IPO

Apart from the analysis based on HHP's (pp. 362-366) specification, distribution of changes in m in the years after an IPO is presented graphically in Figure 1. The median managerial ownership (m) constantly declines following an IPO, and the percentage of widely held firms continuously increases for at least 15 years after an IPO (Figure 1). The result is consistent with that of Helwege, Pirinsky and Stulz (2007, p. 1007 Figure 3), except that Japanese firms appear widely held in a shorter period of time than American firms, regardless of whether we define "widely held" as m less than 10% or 20% (Helwege, Pirinsky and Stulz 2007, p. 1007 Figure 3; our Figure 1). Such changes in m over time after an IPO appear to be associated with the difference in the distribution of m between young and mature firms (Tables 1(B)(c) and 1(B)(d)).

3-3. Large changes in managerial ownership

3-3-1. Empirical methodology

Considering the findings reported in this section, we further clarify determinants of

adjustment is to estimate the correlation between the yearly coefficient estimates (i.e., $\operatorname{Corr}[\beta_t, \beta_{t-1}] = \rho$), and then multiply the estimated variance by $(1 + \rho)/(1 - \rho)$ to account for the serial correlation of the β s. Our adjustment is the same. Our adjustment is also consistent with that of FFST. Specifically, FFST (p. 11) estimate a first-order autoregressive model for each coefficient and then use the estimated autoregression coefficients to adjust the FM standard errors.

managerial ownership by focusing on a large change (drop or increase) in m. As in FS (p. 346), we define a large drop or increase as a change in m larger than 2.5% in absolute value. Approximately 9% of firm-years experiences such large changes in m (Table 4(A)), while on average, about a third of American firms do so in a year (FS p. 346).

As in FS (p. 346), to investigate the extent to which changes in m in excess of 2.5% in absolute value explain the variation in changes in m, we also estimate (but do not report) the following regression for each year of the sample period:

Change in ownership_{it} =
$$c + \beta \times Change$$
 in ownership_{it}|Change
 $< -2.5\% + \gamma \times Change$ in ownership_{it}|Change > $2.5\% + \eta_{it}$
(2)

The *R*-squared of the regression exceeds 98.3% each year, which is similar to the results for American firms (98%, FS p. 347). Therefore, as for American firms, the changes in *m* are mostly explained by large changes.

We further follow Helwege, Pirinsky and Stulz's (2007, p. 1009 Eq. (1)) decomposition and FS' (p. 352 Table 4) approach. Specifically, we also adopt the following equation for decomposing changes in m:

$$\Delta m_t = \left(\frac{S_{t+1}}{N_{t+1}}\right) - \left(\frac{S_t}{N_t}\right) = \frac{\Delta S}{N_t} - m_{t+1}\frac{\Delta N}{N_t}$$
(3)

where Δm_t is defined as the change in *m* from *t* to t + 1, S_t is the number of shares held by managers at date *t* and N_t is the firm's number of shares outstanding at date *t*. As in Helwege, Pirinsky and Stulz (2007, pp. 1009-1010), the term $\frac{\Delta S}{N_t}$ in Eq. (3) represents the change in *m* explained by a change in the number of shares held by managers (the numerator change), and the term $-m_{t+1}\frac{\Delta N}{N_t}$ is the change in *m* caused by a change in the number of shares outstanding (the denominator change).

3-3-2. Results

Our results are reported in Tables 4(A) and 4(B). Consistent with the findings for ownership structure following an IPO (Section 3-2), young firms are more likely to experience a large drop in managerial ownership (m) than mature firms (Table 4(A)). Young firms are also more likely to have a large increase in m than mature firms (the same table).

We further report marginal effects of probit regressions of both a) large decreases and increases in m and b) the decomposition of the large decreases and increases on changes in explanatory variables in Table 4(B). Columns (1) and (4) in the table correspond to columns (1) and (2) in FS (p. 351 Table 3), and columns (2) to (3) and (5) to (6) are closely equivalent to columns (1) to (4) in FS (p. 352 Table 4).

The results show that a firm's concurrent industry-adjusted stock returns are strongly significant predictors of large decreases in m (column (1) in Table 4(B)), which is consistent with the findings on American firms (FS pp. 350, 351 column (1) in Table 3). This is due to the subset of young firms rather than mature firms (columns (7) and (9) in our Table 4(B)). In contrast to American firms (FS p. 351 column (1) in Table 3), a Japanese firm's concurrent market returns are also strongly significant predictors of large decreases in m (columns (1) and (7) in our Table 4(B)).

The overall results appear broadly similar between young and mature firms (columns (7) to (10) in Table 4(B)), however, the major differences include the strong significance of concurrent industry-adjusted and market returns and lagged industry-adjusted returns in predicting a large drop in m for young firms (columns (7) and (9)). In an unreported table, we find that concurrent and lagged industry-adjusted returns are strongly significant predictors of a large drop in m for young firms caused by either a numerator decrease or a denominator increase, suggesting that managers at a young firm (meaning during the period following an IPO) tend to reduce their equities and also increase its shares outstanding when those returns are high. By contrast, those returns are not significant predictors of a large drop in m for mature firms

(column (9)).

Consistent with the findings on American firms (FS pp. 350-351, p. 351 Table 3), large decreases and increases in m are more likely if the level of m is high, and the probability of a large decrease and increase in m is negatively associated with the change in m in the previous year (columns (1) and (4) in our Table 4(B)).

Different from what is reported for American firms (FS p. 351 Table 3), Japanese firms that become financially constrained are more likely to experience a large decrease or increase in m (columns (1) and (4) in our Table 4(B)), whereas financial constraints are not significant predictors of a large decrease in m for American firms (FS p. 351 Table 3).¹⁷ For Japanese firms, the fact that a firm become financially constrained is a strongly significant predictor of both a) a large drop in m caused by either a numerator decrease or a denominator increase and b) a large increase in m due to either a numerator increase or a denominator decrease (columns (2), (3), (5) and (6) in our Table 4(B)).

4. Managerial ownership and Tobin's q: Evidence from 2000 to 2017

4-1. Empirical methodology

The determinants of Tobin's q are analyzed in this section. To do so, we again fundamentally follow HHP's (pp. 371-381) approach. Specifically, as shown in HHP (p. 359), we adopt the following expression for firm value as a baseline model:

$$q_{it} = \delta y_{it} + \beta x_{it} + \gamma u_i + w_{it} \tag{4}$$

¹⁷ The presence and importance of financial constraints have been studied for American firms (Fazzari, Hubbard and Petersen 1988), while an index expressing financial (un)constraints is not established for Japanese firms, and we adopt a no-dividend dummy in the analysis (see Appendix A). This appears related to the fact that it is not feasible to analyze managers' discussion of liquidity that describes the firm's future needs for funds and the source it plans to use to meet those needs, as in Kaplan and Zingales (1997, p. 170), because such information is usually not disclosed in Japanese Annual Securities Reports. In this respect, Whited and Wu (2006, p. 541 Table 1) report their Euler-equation estimation results for American firms. Hadlock and Pierce (2010, p. 1929) is a more recent development for American firms.

where q_{it} is the value of firm *i* at time *t* and y_{it} is an optimal "effort level" chosen by managers, which depends on managerial ownership m_{it} . x_{it} and u_i are observed and unobserved characteristics of the firm, respectively. We also adopt variants of the Eq. (4).

4-2. Results

4-2-1. Introduction

Our estimates of the determinants of Tobin's q are reported in Table 5. The dependent variable is Tobin's q. The estimates of adjusted FM and OLS regressions are reported in Tables 5(A) and 5(B), respectively, corresponding to FFST (p. 48 Table 2 Panel A and p. 49 Table 2 Panel B, respectively). Quadratic specifications are adopted in Table 5(C)(a), corresponding to HHP (pp. 374-375 Table 5(A)) and spline specifications are used in Table 5(C)(b), corresponding to HHP (pp. 376-377 Table 5(B)).

In all specifications in Table 5, explanatory variables include HHP control variables, in addition to the m_{it} in Eq. (4), as expressed by m (linear specifications) in columns (1), (4), (7) and (10) in Tables 5(A) and 5(B), by m and m^2 (meaning m^2) (quadratic specifications) in columns (3), (6), (9) and (12) in Tables 5(A) and 5(B) and in Table 5(C)(a) or by m1, m2 and m3 (spline specifications) in columns (2), (5), (8) and (11) in Tables 5(A) and 5(B) and in Table 5(C)(b).¹⁸

In Table 5(A) adopting adjusted FM regressions, year fixed effects are not controlled, but industry fixed effects are considered. In Table 5(B) based on OLS regressions, both year and

¹⁸ The piecewise-linear terms (m1, m2 and m3) are adopted by MSV (p. 298), and McConnell and Servaes (1990, p. 601) propose the quadratic specifications (m and m^2). The piecewise-linear terms allow for slopes to change at 5% and 25%. We adopt the same numbers for the purpose of comparing Japan with the U.S., and the similarities between the estimates adopting those specifications in all, young and mature firms (Figures 2(A)(a), 2(A)(c) and 2(A)(d), respectively) suggest that the numbers are appropriate for Japanese firms. Although MSV (p. 298) document that the theoretical justification for these particular numbers is not very strong, one reason for adopting the 5% ownership level is relevant to Japan, in that it is also used as a point of mandatory public disclosure of ownership under Japan's Financial Instruments and Exchange Act (for the U.S., see MSV pp. 298-299).

industry fixed effects are controlled. In all columns from (1) to (3) in Tables 5(C)(a) and 5(C)(b), year fixed effects are controlled, and industry or firm fixed effects are also considered where indicated.

4-2-2. Adjusted Fama-MacBeth and OLS regressions

Turning to the adjusted FM regressions in Table 5(A), the linear specifications (m) are statistically significantly positive at the 1% level in all firms (column (1)). Said differently, the simple linear relation between managerial ownership (m) and Tobin's q is strongly significantly positive, which is opposite to the findings on American firms (FFST p. 48 Table 2 Panel A columns (1) and (4)). The result is due to the subset of young firms (column (7) in our Table 5(A)), rather than mature firms in which the coefficient of m is negative and statistically indistinguishable from zero (column (10)).

When we decompose the linear relation by spline specifications (m1, m2 and m3), the relations between the first variable (m1) and Tobin's q become negative at the 1% significance level, and those between the second variable (m2) and q remain strongly significantly positive in all firms (column (2) in Table 5(A)). The results are also relevant to the 500 largest firms (column (5)).

The main implications hold when we use OLS regressions controlling for both fixed year and industry effects and adopting standard errors robust to both clustering at firm-level and heteroscedasticity, except that the statistical significance on the relation between managerial ownership and Tobin's q disappears in the 500 largest firms (columns (4) to (6) in Table 5(B)), which is similar to the results for American firms (FFST p. 49 Table 2 Panel B columns (4) to (6)).

Figure 2(A) draws the relation between managerial ownership and Tobin's q as implied by our estimates reported in Table 5(A), which is comparable to FFST (p. 34 Figure 2, p. 35 Figure 3). FFST (in the abstract, pp. 27-28, p. 34 Figure 2, p. 35 Figure 3) show that the relation between a firm's managerial ownership and Tobin's q is systematically negative, and

when they restrict their sample to larger firms, their findings are consistent with the past literature, showing an increasing and concave relation between managerial ownership and Tobin's q. American and Japanese firms are relatively similar in their 500 largest firms in that the hump-shaped relation is observed in the spline specifications (FFST p. 35 Figure 3; our Figure 2(A)(b)), at which point our analysis is consistent with the prior literature on American firms. However, in all Japanese firms, the relation between a firm's managerial ownership and Tobin's q is positive in general (Figure 2(A)(a)). In other words, the relation appears relatively similar between American and Japanese larger firms but different among all firms, and the difference is the key to the issue.

We find that the positive relation in all firms is due to the subset of young firms (Figure 2(A)(c)) rather than mature firms (Figure 2(A)(d)). Young firms are still in the process of being widely held (Figure 1), and young firms are more likely to be in the range of 25% or more in managerial ownership (*m*) than mature firms (Tables 1(B)(c) and 1(B)(d)). These young firms with high *m* appear to have higher Tobin's *q* than other young firms or mature firms (Tables 1(B)(c) and 1(B)(d)), and the distribution appears to contribute to the positive shape in all firms (Figure 2(A)(a)).

We also learn that the relation between a firm's managerial ownership and Tobin's q is partly negative in all firms when spline specifications are deployed and managerial ownership is 5% or less (the coefficient of the ownership term m1 is statistically significant at the 1% level. column (2) in Table 5(A), Figure 2(A)(a)). The statistically significant partial negative relation is observed in all firms because of the subset of mature firms (column (11) in Table 5(A), Figure 2(A)(d)). This suggests that, considering the number of firm-years grouped by level of m (Tables 1(B)(a), 1(B)(c) and 1(B)(d)), the relation between managerial ownership (m) and Tobin's q in all firms is mostly determined by mature firms when ownership is 5% or less (expressed by the term m1), and is impacted by young firms when it is more than 5% (m2 and m3) (columns (2), (8) and (11) in Table 5(A), Figures 2(A)(a), 2(A)(c) and 2(A)(d)). These findings are robust to the inclusion of year fixed effects and the adoption of standard errors robust to both clustering at firm-level and heteroscedasticity (columns (2), (8) and (11) in Table 5(B)).

4-2-3. Managerial ownership and Tobin's q conditioning on past liquidity

FFST (in the abstract, pp. 27-28) also document that their seemingly contradictory results are explained by cumulative past performance and liquidity. Specifically, FFST (p. 28) observe that illiquid firms are more likely to be low-Tobin's q firms with high managerial ownership.

Thus, we report our estimates of managerial ownership and Tobin's q conditioning on past liquidity (Table 6), which is comparable to those of FFST (p. 51 Table 4). We also estimate Tobin's q on the subset of firms with the highest and lowest past liquidity (FFST p. 18; our Table 6). We find that, in Japanese firms, the quadratic terms (m and m^2) are statistically strongly significant in the low liquidity columns (columns (3), (4), (7) and (8) in Table 6), and the positive and negative signs of those terms are the same between American and Japanese firms when those terms are statistically significant in both (FFST p. 51 Table 4; our Table 6).

The results show that the relation between a firm's managerial ownership and Tobin's q is also different in Japanese firms depending on the liquidity history (Table 6). For firm-years in the low liquidity bracket, the relation is inversely hump-shaped and mostly negative, no matter whether Amihud or FHT illiquidity measures are used (columns (3), (4), (7) and (8) in the same table). In other words, the firm-years in the low liquidity bracket have a different relation between managerial ownership and Tobin's q compared to those in the high liquidity bracket, at which point American and Japanese firms are similar (FFST pp. 18, 51 Table 4; our Table 6).

4-2-4. The effect of ownership change on Tobin's q

We consider the effect of ownership change on Tobin's q in OLS regressions, while controlling for fixed year and industry effects (Table 7). The explanatory variable *ownership change* is defined as the difference between initial m (first observation for a firm) and present mlagged by one period. A positive *ownership change* means a decline in m over the period. The coefficient of the variable *ownership change* is significantly positive at the 1% level in all firms (column (1) in Table 7), suggesting that the decline in managerial ownership from the first year to the last is associated with higher Tobin's q in the current year. The result holds when we restrict our sample to the subset of young firms, mature firms or firms that experience an IPO during the sample period (columns (2), (3) and (4), respectively). These findings are consistent with those of American firms (FFST p. 52 Table 5).¹⁹

4-2-5. Impacts of fixed effects

We further clarify the impacts of fixed effects on the relation between managerial ownership and Tobin's q in panel regressions (Table 5(C)).

Simply put, we confirm that the significant relation becomes less strong when we control for both fixed year and firm effects in the fixed effects model (columns (3) in Tables 5(C)(a) and 5(C)(b)). This is similar to what is reported for American firms (HHP p. 372), in which the managerial ownership variables are significant only in the pooled model with no other variables and in the model with only industry fixed effects (HHP pp. 372, 374-375 Table 5(A)).²⁰

4-3. Robustness

In the spirit of FFST (pp. 13-15, p. 50 Table 3), we report results of additional robustness tests in Table 5(D). In column (2), we add industry x year fixed effects to the regression in column (1), and the results confirm that allowing industry effects to vary by year has almost no impact on our estimates. Next, as in Gompers, Ishii and Metrick (2010, p. 1069),

¹⁹ Unreported robustness tests confirm that the coefficients remain strongly significantly positive for all firms and in the subsets of young firms, mature firms and firms that experience an IPO during the sample period when we estimate Tobin's *q* as median regressions, or adopt a log transformation or -1/q transformation, meaning that the results are robust to both measurement error and the influence of outliers (for the robustness tests, see Section 4-3). ²⁰ MSV (p. 293) find that Tobin's *q* first increases, then declines, and finally rises as managerial ownership increases. HHP (pp. 372-373) document that the MSV's specification is robust to the inclusion of observable contracting determinants and industry dummies, but once they control for both observable firm characteristics and firm fixed effects, changes in managerial ownership levels have no statistically significant effect on Tobin's *q*.

we estimate three different variations of our specification. The first variation deploys robust regression to deal with measurement error, to which estimates of Tobin's q are subject, by estimating a median regression in which the sum of absolute residuals is minimized and which is less sensitive to outliers (column (3) in Table 5(D)).²¹ The second variation adopts a log transformation to reduce the influence of outliers (column (4) in the same table). The third variation uses -(1/q) as the dependent variable (column (5)). The coefficients of the ownership terms (m1, m2 and m3) are qualitatively similar, and all the coefficients are statistically significant at the 1% level (columns (1) to (5)). The results confirm that our findings reported in Section 4-2-2 are robust to both the measurement error and the influence of outliers.²²

Furthermore, we graphically show the relation between managerial ownership and Tobin's q estimated by median regressions (Figure 2(B)). Consistent with the results of our robustness tests (Table 5(D)), the figures are similar to those grounded on our main results (Figures 2(B) and 2(A), respectively), except that the hump-shaped relation in the 500 largest firms in spline specifications is less clearly observed (Figures 2(A)(b) and 2(B)(b)), and the relation becomes virtually similar to that of mature firms (Figures 2(B)(b) and 2(B)(d), respectively).

Finally, in the spirit of FFST (p. 15), we estimate OLS regressions for three different subperiods of six years each (unreported). We find that the simple linear relation between m and Tobin's q is significantly positive at the 1% level in each subperiod. The results further confirm that the relation observed in the spline specifications is qualitatively similar to that in our main estimates in each subperiod, and the coefficients are often strongly significant (the signs of the

²¹ Considering the point raised by Gormley and Matsa (2014, p. 617) that demeaning the dependent variable with respect to the group produces inconsistent estimates and can distort inference, we do not use industry-adjusted Tobin's q in our median regressions.

²² Unreported robustness tests further confirm that the relation between managerial ownership and Tobin's q often becomes stronger in statistical significance in young and mature firms when Tobin's q is estimated as median regressions or when a log transformation or -1/q transformation is used.

coefficients of m1, m2 and m3 are the same as those in columns (2) in Tables 5(A) and 5(B)).

4-4. Brief summary

Overall, we find that, the relation between managerial ownership and Tobin's q is relatively similar between American and Japanese larger firms in that the hump-shaped relation is observed in the spline specifications (FFST p. 35 Figure 3; our Figure 2(A)(b)), at which point our analysis is consistent with the prior literature on American firms.

However, in all Japanese firms, the relation between a firm's managerial ownership and Tobin's q is positive in general (Figure 2(A)(a)), and the positive relation is robust to both the measurement error and the influence of outliers. In other words, American and Japanese firms appear relatively similar in their 500 largest firms but different for all firms, and the difference is the key to the issue. We find that the positive relation in all firms is due to the subset of young firms (Figure 2(A)(c)) rather than mature firms (Figure 2(A)(d)). Young firms with high m appear to have higher Tobin's q than other young firms or mature firms (Tables 1(B)(c) and 1(B)(d)), and the fact that more firms are distributed in the range of 25% or more in m in young firms than in mature firms appears to contribute to the positive shape in all firms (Figure 2(A)(a)). The results suggest that the fraction of newly listed firms is a decisive factor in the relation between managerial ownership and firm value in all firms.

5. External validities of the theories and empirical evidence on American firms

Jensen and Meckling (1976, p. 305) defined the concept of agency costs, in relation to the "separation and control" issue. It seems reasonable to assume that if managers are well incentivized to maximize firm value by holding equities of the firm, then their equity ownership probably has positive effects on the value of the firm. Past studies abound on American firms, which are primarily on a small number of the largest firms. However, by using more than 50,000 firm-years from 1988 to 2015, the recent work FFST show that the relation between a firm's managerial ownership and Tobin's q is systematically negative, and by doing so corrects those shortcomings.

Although the number of equities owned by managers of listed firms is disclosed and the information is available as data, the literature on Japanese firms analyzing the relation between managerial ownership and Tobin's q is scarce. To the best of our knowledge, our paper is the first to analyze Japanese firms in large datasets and clarify the relevance and external validity of the theories and empirical evidence in the context of American firms.

American and Japanese firms are relatively similar in that, for their 500 largest firms, the hump-shaped relation is observed in the spline specifications (FFST p. 35 Figure 3; our Figure 2(A)(b)), at which point our analysis is consistent with the prior literature on American firms. However, in all Japanese firms, the relation between a firm's managerial ownership and Tobin's q is positive in general (Figure 2(A)(a)), and the positive relation is robust to both the measurement error and the influence of outliers (Figure 2(B)(a)). In other words, American and Japanese firms appear relatively similar in their 500 largest firms but are different in all firms, and the difference is the key to the issue.

We find that the positive relation in all firms is due to the subset of young firms (Figure 2(A)(c)). Young firms with high managerial ownership (*m*) appear to have higher Tobin's *q* than other young firms or mature firms (Tables 1(B)(c) and 1(B)(d), respectively), and the fact that more firms are distributed in the range of 25% or more in *m* in young firms than in mature firms appears to contribute to the positive shape for all firms (Figure 2(A)(a)). The general reduction in *m* after an IPO is the primary factor contributing to the change in *m* (Figure 1, Table 4(A)). Concurrent industry-adjusted and market returns and lagged industry-adjusted returns are strongly significant predictors of a large drop in *m* for young firms (column (7) in Table 4(B)). The results suggest that the fraction of newly listed firms is a decisive factor in the relation between managerial ownership and firm value.

Different from what is reported for American firms (FS p. 351 Table 3), Japanese firms that become financially constrained are more likely to experience a large decrease or increase in managerial ownership (m) (columns (1) and (4) in our Table 4(B)), whereas financial constraints

are not significant predictors of a large decrease in *m* for American firms (FS p. 351 Table 3).

Our results suggest that Japanese firms with a history of high or low liquidity have significantly higher or lower managerial ownership (m) when controlling for fixed year and industry effects (columns (2), (4), (6) and (8) in Table 3), which is in marked contrast to the findings on American firms. However, the relation between a firm's managerial ownership and Tobin's q is different in both American and Japanese firms depending on the liquidity history (Table 6). For firm-years in the low liquidity bracket, the relation is inversely hump-shaped and mostly negative (columns (3), (4), (7) and (8) in Table 6). The result shows that the firm-years in the low liquidity bracket have a different relation between managerial ownership and Tobin's q compared to those in the high liquidity bracket, at which point American and Japanese firms are similar (FFST pp. 18, 51 Table 4; our Table 6).

Our results also confirm that the significant relation becomes less strong when we control for both fixed year and firm effects in the fixed effects model (columns (3) in Tables 5(C)(a) and 5(C)(b)). It is similar to what is reported for American firms (HHP p. 372).

6. Conclusion

We focus on Japanese listed firms in the context of the relation between managerial ownership and Tobin's q. By using 59,064 firm-years of 4,905 unique Japanese firms from 2000 to 2017, we find that the relation between a firm's managerial ownership and Tobin's q is positive in general (Figure 2(A)(a)). The positive relation is robust to both the measurement error and the influence of outliers, and it is due to the subset of young firms (Figure 2(A)(c)). Young firms with high managerial ownership (m) appear to have higher Tobin's q than other young firms or mature firms (Tables 1(B)(c) and 1(B)(d), respectively), and the fact that more firms are distributed in the range of 25% or more in m in young firms than in mature firms appears to contribute to the positive shape for all firms (Figure 2(A)(a)). The general reduction in managerial ownership (m) after an IPO is the primary factor contributing to the change in m (Figure 1, Table 4(A)). Concurrent industry-adjusted and market returns and lagged

industry-adjusted returns are strongly significant predictors of a large drop in m for young firms (column (7) in Table 4(B)). The results suggest that the fraction of newly listed firms is a decisive factor in the relation between managerial ownership and firm value. When we restrict our sample to the 500 largest firms, the hump-shaped relation is observed in the spline specifications (Figure 2(A)(b)), at which point our analysis is consistent with the prior literature on American firms.

Our results suggest that Japanese firms with a history of high or low liquidity have significantly higher or lower managerial ownership (m), when controlling for both fixed year and industry effects, which is in marked contrast to the findings on American firms. However, the relation between a firm's managerial ownership and Tobin's q is different in both American and Japanese firms depending on the liquidity history (Table 6). For firm-years in the low liquidity bracket, the relation is inversely hump-shaped and mostly negative (columns (3), (4), (7) and (8) in Table 6). The result shows that the firm-years in the low liquidity bracket have a different relation between managerial ownership and Tobin's q compared to those in the high liquidity bracket, at which point American and Japanese firms are similar (FFST pp. 18, 51 Table 4; our Table 6).

References

- Amihud, Yakov, 2002, Illiquidity and stock returns: cross-section and time-series effects, *Journal of Financial Markets* 5, 31-56.
- Bebchuk, Lucian, Alma Cohen, and Allen Ferrell, 2009, What matters in corporate governance?, *Review of Financial Studies* 22, 783-827.
- Chakravarty, Sugato, Huseyin Gulen, and Stewart Mayhew, 2004, Informed trading in stock and option markets, *Journal of Finance* 59, 1235-1257.
- Coles, Jeffrey L., Michael L. Lemmon, and J. Felix Meschke, 2012, Structural models and endogeneity in corporate finance: the link between managerial ownership and corporate performance, *Journal of Financial Economics* 103, 149-168.
- Core, John E., and David F. Larcker, 2002, Performance consequences of mandatory increases in executive stock ownership, *Journal of Financial Economics* 64, 317-340.
- Demsetz, Harold, and Kenneth Lehn, 1985, The structure of corporate ownership: causes and consequences, *Journal of Political Economy* 93, 1155-1177.
- Fabisik, Kornelia, Rüdiger Fahlenbrach, René M. Stulz, and Jérôme Taillard, 2018, Why are firms with more managerial ownership worth less?, ECGI Finance Working Paper No. 587/2018 (<u>http://dx.doi.org/10.2139/ssrn.3295797</u>).
- Fahlenbrach, Rüdiger, and René M. Stulz, 2009, Managerial ownership dynamics and firm value, *Journal of Financial Economics* 92, 342-361.
- Fama, Eugene F., and James D. MacBeth, 1973, Risk, return and equilibrium: empirical tests, Journal of Political Economy 81, 607-636.
- Fazzari, Steven M., R. Glenn Hubbard, and Bruce C. Petersen, 1988, Financing constraints and corporate investment, *Brookings Papers on Economic Activity* 1988, 141-206.
- Fong, Kingsley Y. L., Craig W. Holden, and Charles A. Trzcinka, 2017, What are the best liquidity proxies for global research?, *Review of Finance* 21, 1355-1401.
- Franks, Julian, Colin Mayer, and Hideaki Miyajima, 2014, The ownership of Japanese corporations in the 20th century, *Review of Financial Studies* 27, 2580-2625.
- Gompers, Paul, Joy Ishii, and Andrew Metrick, 2003, Corporate governance and equity prices, *Quarterly Journal of Economics* 118, 107-156.
- Gompers, Paul A., Joy Ishii, and Andrew Metrick, 2010, Extreme governance: an analysis of dual-class firms in the United States, *Review of Financial Studies* 23, 1051-1088.
- Gormley, Todd A., and David A. Matsa, 2014, Common errors: how to (and not to) control for

unobserved heterogeneity, Review of Financial Studies 27, 617-661.

- Hadlock, Charles J., and Joshua R. Pierce, 2010, New evidence on measuring financial constraints: moving beyond the KZ index, *Review of Financial Studies* 23, 1909-1940.
- Hayashi, Fumio, 1982, Tobin's marginal q and average q: a neoclassical interpretation, *Econometrica* 50, 213-224.
- Hayashi, Fumio, and Tohru Inoue, 1991, The relation between firm growth and Q with multiple capital goods: theory and evidence from panel data on Japanese firms, *Econometrica* 59, 731-753.
- Helwege, Jean, Christo Pirinsky, and René M. Stulz, 2007, Why do firms become widely held? An analysis of the dynamics of corporate ownership, *Journal of Finance* 62, 995-1028.
- Himmelberg, Charles P., R. Glenn Hubbard, and Darius Palia, 1999, Understanding the determinants of managerial ownership and the link between ownership and performance, *Journal of Financial Economics* 53, 353-384.
- Holderness, Clifford G., Randall S. Kroszner, and Dennis P. Sheehan, 1999, Were the good old days that good? Changes in managerial stock ownership since the Great Depression, *Journal of Finance* 54, 435-469.
- Hoshi, Takeo, and Anil K. Kashyap, 1990, Evidence on *q* and investment for Japanese firms, *Journal of the Japanese and International Economies* 4, 371-400.
- Jensen, Michael C., and William H. Meckling, 1976, Theory of the firm: managerial behavior, agency costs and ownership structure, *Journal of Financial Economics* 3, 305-360.
- Kaplan, Steven N., 1994, Top executive rewards and firm performance: a comparison of Japan and the United States, *Journal of Political Economy* 102, 510-546.
- Kaplan, Steven N., and Luigi Zingales, 1997, Do investment-cash flow sensitivities provide useful measures of financing constraints?, *Quarterly Journal of Economics* 112, 169-215.
- Kato, Hideaki Kiyoshi, Michael Lemmon, Mi Luo, and James Schallheim, 2005, An empirical examination of the costs and benefits of executive stock options: evidence from Japan, *Journal of Financial Economics* 78, 435-461.
- Kim, E. Han, and Yao Lu, 2011, CEO ownership, external governance, and risk-taking, *Journal of Financial Economics* 102, 272-292.
- Li, Xing, Stephen Teng Sun, and Constantine Yannelis, 2018, Managerial ownership and firm performance: evidence from the 2003 tax cut, Working Paper (https://dx.doi.org/10.2139/ssm.2285638).

- McConnell, John J., and Henri Servaes, 1990, Additional evidence on equity ownership and corporate value, *Journal of Financial Economics* 27, 595-612.
- Morck, Randall, Masao Nakamura, and Anil Shivdasani, 2000, Banks, ownership structure, and firm value in Japan, *Journal of Business* 73, 539-567.
- Morck, Randall, Andrei Shleifer, and Robert W. Vishny, 1988, Management ownership and market valuation: an empirical analysis, *Journal of Financial Economics* 20, 293-315.
- Peters, Ryan H., and Lucian A. Taylor, 2017, Intangible capital and the investment-q relation, Journal of Financial Economics 123, 251-272.
- Petersen, Mitchell A., 2009, Estimating standard errors in finance panel data sets: comparing approaches, *Review of Financial Studies* 22, 435-480.
- Whited, Toni M., and Guojun Wu, 2006, Financial constraints risk, *Review of Financial Studies* 19, 531-559.
- Zhou, Xianming, 2001, Understanding the determinants of managerial ownership and the link between ownership and performance: comment, *Journal of Financial Economics* 62, 559-571.

riables	Descriptions	Data sources and codes
Firm value and ownership-	related variables	
Tobin's q	See Appendix B.	
m	The total equity holdings of managers as a fraction of common equity outstanding. The managers are directors (including outside directors) and officers (<i>shikkōyaku</i>). Employees (<i>shikkōyakuin</i>) or statutory auditors (<i>kansayaku</i>) are not included.	Nikkei Directors and Officers data (<i>yakuin</i> data) (details information colum No. 30), Annual Securities Reports derived from PRONEXUS' eol database and FDS Japanese Listed Stocks Monthl Return Data (CMSHARE)
<i>m^2</i>	The square of m	Same as above
m1	Equals <i>m</i> if $0.00 < m < 0.05$; 0.05 if $m \ge 0.05$	Same as above
<i>m2</i>	Equals m -0.05 if 0.05 < m < 0.25; 0.00 if m <=0.05; 0.20 if m >=0.25	Same as above
m3	Equals $m - 0.25$ if $0.25 < m < 1.00$; 0.00 if $m = < 0.25$	Same as above
Ownership change	The difference between initial m (observation reported in the year of an IPO or the first observation during the sample period) and present m lagged by one period	Same as above plus a list of IPO stocks provided by FDS, which is part of the Japanese Listed Stocks Daily Return Data
HHP control variables		
LN(S)	The natural log of sales	Nikkei FQ (D01021)
(LN(S))^2	The square of LN(S)	Same as above
K/S	The ratio of tangible assets to sales	Nikkei FQ (D01021, B01063)
(K/S)^2	The square of K/S	Same as above
Y/S	The ratio of operating income to sales	Nikkei FQ (D01029, D01021)
RDK	The ratio of research and development expenditures to tangible assets	Nikkei FQ (H01033, B01063)
RDUM	A dummy variable equal to one if the data required to estimate RDK is available, and otherwise equal to zero. As in HHP (p. 367 Table 3), we set missing observations of RDK equal to zero, and then include this dummy variable to allow the intercept term to capture the mean of the RDK for missing values.	Same as above
A/K	The ratio of advertising expenditures to tangible assets	Nikkei FQ (K01069, B01063)
ADUM	A dummy variable equal to one if the data required to estimate A/K is available, and otherwise equal to zero (see the description of $RDUM$)	Same as above
I/K	The ratio of capital expenditures to tangible assets	Nikkei FQ (A01143, B01063)
SIGMA	The standard error of the residuals from a CAPM model estimated using daily data for the period covered by the annual sample	FDS FF3 Extended Market (Rm, Rf), Japanese Listed Stocks Daily Return Data (ROR)
SIGDUM	Equal to one if the data required to estimate <i>SIGMA</i> is available, and otherwise equal to zero (see the description of <i>RDUM</i>)	Same as above

Appendix A. Variable descriptions

Appendix A. Continued.

FS explanatory variables		
R&D/assets	The ratio of research and development expenditures to book	Nikkei FQ (H01033, B01110)
las (marta)	value of assets	N:H-:: FO (001110)
log (assets)	The natural log of book value of assets	Nikkei FQ (B01110)
capex/assets cash flow	The ratio of capital expenditures to book value of assets EBITDA over sales	Nikkei FQ (A01143, B01110) Nikkei FQ (D01066, D01047, H01005, D01021)
PPE/assets leverage	The ratio of tangible assets to book value of assets Long-term debt plus short-term debt over book value of assets	Nikkei FQ (B01063, B01110) Nikkei FQ (C01021, C01057, B01110)
financially (un)constrained	A dummy variable equal to one if a firm does not pay a dividend and zero otherwise	Nikkei FQ (I_A01173, A01140)
turnover	Annualized daily turnover at the principal market for each stock	FDS Japanese Listed Stocks Daily Return Data (VOLUME, CMSHARE)
idiosyncratic volatility	The standard deviation of the residuals from a CAPM model estimated using daily data for the period covered by the annual sample	FDS FF3 Extended Market (Rm, Rf), Japanese Listed Stocks Daily Return Data (ROR)
industry-adj. return market return	The annual stock return of a firm adjusted by industry average The annual stock return of the market	FDS Japanese Listed Stocks Monthly Return Data (ADJ_CLOSE_P, TSE33, NK CODE: from IDX1001 to IDX1033) FDS Japanese Listed Stocks Monthly
market return		Return Data (ADJ_CLOSE_P, NK CODE: IDX1082)
change in CEO	A dummy variable equal to one if a manager who has the title to represent the firm is newly appointed or resigned (including a remaining director newly obtaining or losing the title), and otherwise equal to zero	Nikkei Directors and Officers data (details information column No. 11), Annual Securities Reports derived from PRONEXUS' eol database
analyst coverage	The average number of analysts that follow a firm during the fiscal year. As in FS (p. 350), we set the number of analysts to	I/B/E/S summary database (NUMEST)
Other variables	zero if a firm is not covered by analysts.	
Years listed	The difference between the first date on which a firm's stock	FDS Japanese Listed Stocks Daily Retur
	price is available in the data provided by FDS (Japanese Listed Stocks Daily Return Data, starting from December 28, 1976) and the date on which the firm's fiscal year ends	Data, the list of IPO stocks provided by FDS
Amihud	The illiquidity measure proposed by Amihud (2002). Amihud is defined as	FDS Japanese Listed Stocks Daily Retur Data (ROR, CMSHARE, VOLUME)
	$Amihud = 1 / D_{iy} \sum_{t=1}^{D_{iy}} R_{iyd} / VOLD_{iyd}$	
	where D_{iy} is the number of days for which data are available for stock <i>i</i> in year <i>y</i> , $ R_{iyd} $ is the absolute return on stock <i>i</i> on day <i>d</i> of year <i>y</i> , and $VOLD_{iyd}$ is the respective daily volume in yen (Amihud 2002, p. 34).	
FHT	The illiquidity measure proposed by FHT. <i>FHT</i> is defined as $FHT = 2\sigma N^{-1} \left(\frac{1+z}{2}\right)$	FDS Japanese Listed Stocks Daily Retu Data (ROR)
	where N^{-1} is the inverse cumulative normal distribution function, and	
	z is the number of zero return days divided by the sum of the numbers of trading days and no-trade days (FHT, p.	
	1362).	

For ownership variables (m, m^2 , m1, m2 and m3) and HHP's control variables, see HHP (p. 367). For FS explanatory variables, see FS (p. 351 Table 3, p. 352 Table 4).

Appendix B. Estimation of Tobin's q

As is common in the literature, we follow Kaplan and Zingales' (1997, p. 177) method for the estimation of Tobin's q.²³ More specifically, we measure Tobin's q as the market value of assets divided by the book value of assets where the market value of assets equals the book value of assets plus the market value of common equity less the sum of the book value of common equity and balance sheet deferred taxes.²⁴ We calculate q at the end of a firm's fiscal year.

Estimation

Concepts	Data sources, codes and/or descriptions
the book value of assets	Nikkei FQ (B01110 [total assets])
the market value of common equity	Nikkei FQ (A01057 [the number of shares issued at the
	end of period]) multiplied by the stock price provided by
	Financial Data Solutions (CLOSE_P [Japanese Listed
	Stocks Daily Return Data])
the book value of common equity	the sum of Nikkei FQ (C01085 [capital stock], C01087
	[capital surplus], C01092 [retained earnings], C01097
	[treasury stock], and C01104 [non-controlling interests])
balance sheet deferred taxes	the sum of Nikkei FQ (B01054 [deferred tax assets],
	B01098 [deferred tax assets], B01099 [deferred tax assets
	for land revaluation], C01044 [deferred tax liabilities],
	C01073 [deferred tax liabilities] and C01074 [deferred tax
	liabilities for land revaluation])

For the estimation, we treat Tobin's q as a missing value if at least one of the following four variables is missing: Nikkei FQ codes B01110 [total assets],²⁵ A01057 [the number of shares issued at the end of period], C01085 [capital stock] and FDS Japanese Listed Stocks Daily Return Data code CLOSE_P [stock closing price]. Following McConnell and Servaes (1990, p. 600), we delete nonfinancial firms with Tobin's q greater than 6.0 to preclude problems with outliers. We also treat negative Tobin's q as a missing value. We exclude firm-years with missing Tobin's q.

²³ Hoshi and Kashyap (1990, pp. 390-398) construct a tax-adjusted q for Japanese firms, while maintaining Hayashi's (1982) assumptions which guarantee the equality of marginal and average q. Hayashi and Inoue (1991, pp. 737-739) measure an asset-aggregated, tax-adjusted q for Japanese firms.

²⁴ We do not follow Peters and Taylor's (2017, p. 256) method because the amount of past intangible investments, which is needed to calculate internally created intangible capital, is not generally disclosed or available for Japanese firms.

²⁵ Furthermore, we require firms to have total assets greater than zero.

Appendix C. Single and dual-class firms

(a) Number of single and dual-class firms

This table reports the number of single and dual-class firms during the sample period. We exclude dual-class firms from the sample.

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Number of single-class firms	2,867	3,007	3,189	3,180	3,152	3,247	3,329	3,401	3,390	3,298	3,195	3,126	3,097	3,047	3,082	3,156	3,187	3,169
Number of dual-class firms	5	9	16	34	35	61	62	59	62	73	70	70	70	67	60	54	50	42

(b) Summary statistics

In the spirit of Gompers, Ishii and Metrick (2010, p. 1059 Table 3), this table gives means and medians of three variables for single and dual-class firms.

	Dua	al-class fir	ms	Sing	le-class fit	rms	Difference				
	Obs.	Mean	Median	Obs.	Mean	Median	Mean	Median			
Asssets	899	4,757	520	57,119	1,862	286	-2,895 ***	(0.0000)			
Debt/Assets	896	0.25	0.23	56,523	0.16	0.13	-0.09 ***	(0.0000)			
Age	899	11.14	50.98	57,119	30.66	51.74	19.52 ***	(0.9953)			

Assets is the book value of assets in 100 million yen (Nikkei FQ code B01110 [total assets]); *Debt/Assets* is the ratio of long-term debt (Nikkei FQ code C01057 [noncurrent liabilities]) to *Assets*; *Age* is firm age in years, which is defined as the difference between the date on which a firm was established (Nikkei FQ code PRMTD1 [actual date of foundation]) and the date on which the firm's fiscal year ends. Significant differences for the means are indicated at the 1% level by ***. The Wilcoxon rank-sum test *p*-values for the medians are given in parentheses in the eighth column.

Table 1. Summary statistics

(A) Summary statistics for the variables in the analysis

The table reports the summary statistics for the variables adopted in the analysis.

	Obs.	Mean	S.D.	p10	p50	p90
Firm value and ownership-related	variables					
Tobin's q	59,064	1.142	0.661	0.669	0.967	1.748
m	59,064	0.088	0.135	0.001	0.020	0.286
HHP control variables						
LN(S)	59,064	10.400	1.652	8.448	10.280	12.561
K/S	59,064	0.377	0.922	0.034	0.258	0.699
Y/S	59,064	0.020	2.838	-0.002	0.042	0.128
RDK	59,064	0.194	3.187	0.000	0.011	0.190
RDUM	59,064	0.612	0.487	0.000	1.000	1.000
AK	59,064	0.261	5.260	0.000	0.000	0.157
ADUM	59,064	0.441	0.496	0.000	0.000	1.000
I/K	59,064	0.357	2.358	0.026	0.119	0.483
SIGMA	59,064	0.191	0.486	0.076	0.139	0.283
SIGDUM	59,064	1.000	0.000	1.000	1.000	1.000
FS explanatory variables						
R&D/ass ets	59,064	0.013	0.026	0.000	0.003	0.038
log (assets)	59,064	10.386	1.622	8.478	10.230	12.510
capex/assets	59,064	0.040	0.043	0.005	0.028	0.087
cash flow	59,051	0.060	2.597	0.017	0.076	0.184
PPE/assets	59,064	0.287	0.186	0.046	0.268	0.538
leverage	59,064	0.507	0.218	0.215	0.511	0.786
financially (un)constrained	59,064	0.136	0.342	0.000	0.000	1.000
turnover	59,064	0.005	0.017	0.000	0.002	0.009
idiosyncratic volatility	59,064	2.621	2.121	1.193	2.171	4.349
industry-adj. return	57,406	0.057	0.556	-0.369	-0.009	0.477
market return	59,064	0.048	0.249	-0.278	0.022	0.464
change in CEO	59,064	0.273	0.446	0.000	0.000	1.000
analyst coverage	59,064	0.726	1.277	0.000	0.000	2.290
Other variables						
Years listed	59,064	17.635	11.263	3.313	16.110	34.253
Am i hud	59,048	47.716	94.419	3.230	17.181	119.932
FHT	59,031	1.611	3.147	0.124	0.614	4.063

p10, p50 and p90 are the 10th, 50th and 90th percentile, respectively, of the variables (hereafter the same applies). Because the HHP control variable *SIGMA* is available for all firm-years in our analysis, *SIGDUM* is not included as an explanatory variable in the regressions in the following tables.

Table 1. Continued.

(B) Mean values of Tobin's q, grouped by level of managerial ownership

The tables report mean values of Tobin's q, grouped by level of managerial ownership (m).

(a) All firms

Managerial ownership	Number of	Mean	S.D. of Tobin's q
(<i>m</i>)	firm-years	Tobin's q	S.D. of foom sq
0-0.2%	11,880	1.143	0.516
0.2-5%	24,669	1.037	0.533
5-10%	5,830	1.121	0.686
10-15%	4,072	1.121	0.646
15-20%	3,012	1.208	0.730
20-25%	2,244	1.250	0.781
25-30%	1,879	1.333	0.867
30-35%	1,500	1.400	0.894
35-40%	1,172	1.475	1.001
40-45%	845	1.509	1.034
45-50%	725	1.459	1.014
50-55%	469	1.581	1.095
55-60%	316	1.652	1.109
60-65%	195	1.699	1.164
65-70%	129	1.795	1.267
70-75%	35	2.767	1.664
75-80%	49	1.831	1.019

(c) Young firms

Managerial ownership	Number of	Mean	S.D. of Tobin's q
(<i>m</i>)	firm-years	Tobin's q	3.D. 01 100m sq
0-0.2%	1,722	1.286	0.734
0.2-5%	4,639	1.258	0.788
5-10%	1,877	1.359	0.898
10-15%	1,739	1.279	0.811
15-20%	1,591	1.346	0.851
20-25%	1,236	1.410	0.878
25-30%	1,165	1.469	0.953
30-35%	1,089	1.500	0.942
35-40%	941	1.538	1.027
40-45%	669	1.576	1.099
45-50%	580	1.560	1.072
50-55%	406	1.639	1.137
55-60%	297	1.693	1.125
60-65%	176	1.763	1.192
65-70%	123	1.833	1.280
70-75%	33	2.853	1.677
75-80%	42	1.833	1.074

Managerial ownership	Number of	Mean	S.D. of Tobin's q
(<i>m</i>)	firm-years	Tobin's q	5.D. of 100m sq
0-0.2%	5,529	1.148	0.425
0.2-5%	2,533	1.104	0.450
5-10%	365	1.207	0.607
10-15%	202	1.197	0.445
15-20%	108	1.218	0.416
20-25%	73	1.525	0.976
25-30%	49	1.762	0.931
30-35%	50	1.337	0.554
35-40%	55	1.290	0.838
40-45%	10	1.287	0.697
45-50%	13	1.230	0.747
50-55%	7	1.441	0.458
55-60%	3	0.983	0.117
60-65%	0	_	_
65-70%	0	_	_
70-75%	0	_	_
75-80%	3	1.944	0.540

(d) Mature firms

32

Managerial ownership	Number of	Mean	CD of Tohin's a
(<i>m</i>)	firm-years	Tobin's q	S.D. of Tobin's q
0-0.2%	10,158	1.119	0.465
0.2-5%	20,030	0.986	0.439
5-10%	3,953	1.008	0.521
10-15%	2,333	1.003	0.455
15-20%	1,421	1.053	0.522
20-25%	1,008	1.053	0.585
25-30%	714	1.109	0.644
30-35%	411	1.136	0.683
35-40%	231	1.219	0.838
40-45%	176	1.255	0.679
45-50%	145	1.053	0.580
50-55%	63	1.209	0.657
55-60%	19	1.002	0.491
60-65%	19	1.107	0.613
65-70%	6	1.010	0.569
70-75%	2	1.355	0.051
75-80%	7	1.824	0.652

(b) 500 largest firms

Table 1. Continued.

(C) Summary statistics by fiscal year

The tables report the summary statistics by fiscal year. They are comparable to those of FFST (p. 47 Table 1).

(a)All firms

		т	'obin's q				Manageri	al owners	hin (m)				Amihud					FHT			Years listed					
Year	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	
2000	3,149	1.216	0.800	1.044	1.709	3,149	0.085	0.001	0.015	0.278	3,149	85.279	12.529	53.169	186.482	3,148	3.172	0.364	1.812	7.804	3,149	13.419	2.272	12.022	24.255	
2001	3,267	1.181	0.768	1.018	1.692	3,267	0.089	0.001	0.018	0.289	3,267	81.887	10.545	49.545	176.994	3,266	2.814	0.306	1.644	6.587	3,267	13.584	1.780	12.277	25.254	
2002	3,312	0.952	0.585	0.879	1.320	3,312	0.094	0.001	0.020	0.298	3,312	79.040	9.389	45.834	172.989	3,312	2.602	0.244	1.550	6.140	3,312	13.914	2.234	12.431	26.253	
2003	3,278	1.138	0.682	0.983	1.693	3,278	0.092	0.001	0.021	0.289	3,278	54.416	5.224	27.341	123.967	3,278	1.937	0.218	1.150	4.394	3,278	14.372	2.450	13.086	27.255	
2004	3,341	1.255	0.760	1.043	1.903	3,341	0.091	0.001	0.022	0.286	3,341	33.547	3.723	14.836	76.701	3,341	1.360	0.178	0.795	2.875	3,341	14.760	2.533	13.426	28.255	
2005	3,376	1.438	0.858	1.181	2.305	3,376	0.091	0.001	0.022	0.291	3,376	22.024	2.595	8.394	51.551	3,376	1.063	0.167	0.574	2.304	3,376	15.160	2.387	13.624	29.254	
2006	3,482	1.296	0.802	1.091	1.982	3,482	0.098	0.001	0.025	0.315	3,482	29.701	2.775	10.881	68.081	3,482	1.057	0.135	0.513	2.556	3,482	15.244	2.111	13.290	30.253	
2007	3,522	1.058	0.666	0.938	1.540	3,522	0.101	0.001	0.027	0.322	3,522	44.366	3.207	16.791	104.305	3,522	1.375	0.136	0.576	3.574	3,522	15.686	2.204	13.546	31.255	
2008	3,469	0.892	0.543	0.823	1.220	3,469	0.098	0.001	0.021	0.314	3,469	83.309			199.860	3,469	2.354	0.173	0.807	6.674	3,469	16.541	3.042	14.491	32.255	
2009	3,324	0.962	0.596	0.876	1.344	3,324	0.095	0.001	0.021	0.306	3,324	73.380			184.738	3,324	2.118	0.139	0.714	5.791	3,324	17.570	3.943	15.506	33.254	
2010	3,238	0.938	0.593	0.859	1.303	3,238	0.089	0.001	0.020	0.292	3,237	62.607			158.914	3,237	2.103	0.125	0.687	5.618	3,238	18.551	4.778	16.542	34.253	
2011	3,179	0.934	0.601	0.862	1.278	3,179	0.084	0.001	0.020	0.280	3,179	58.005			137.612	3,179	1.803	0.117	0.589	4.809	3,179	19.378	5.361	17.489	35.255	
2012	3,155	0.995	0.608	0.887	1.416	3,155	0.082	0.001	0.020	0.278	3,155	46.881	3.250		116.397	3,154	1.466	0.110	0.528	3.660	3,155	20.213	6.209	18.431	36.255	
2013	3,106	1.101	0.648	0.940	1.696	3,106	0.075	0.001	0.018	0.247	3,106	26.050	2.771	10.052		3,104	0.952	0.091	0.405	2.321	3,106	21.052	7.028	19.437	37.254	
2014	3,151	1.235	0.720	1.014	1.972	3,151	0.077	0.001	0.019	0.247	3,149		2.301	7.968		3,147	0.773	0.081	0.334	1.861	3,151	21.560	7.176	19.970	38.253	
2015	3,233	1.234	0.672	0.983	2.114	3,233	0.078	0.001	0.019	0.258	3,229	20.236	2.530	7.871		3,226	0.686	0.069	0.307	1.611	3,233	21.897	5.999	20.531	39.255	
2016	3,246	1.295	0.703	1.026	2.228	3,246	0.081	0.001	0.018	0.265	3,243	22.035	2.520	8.629		3,240	0.777	0.075	0.311	1.880	3,246	22.532	5.196	21.429	40.255	
2017	3,236	1.440	0.764	1.107	2.570	3,236	0.081	0.001	0.019	0.264	3,230		1.848	5.345		3,226	0.555	0.067	0.230	1.128	3,236	23.013	4.578	22.160	41.254	
Full sample	59,064	1.142	0.669	0.967	1.748	59,064	0.088	0.001	0.020	0.286	59,048	47.716	3.230	17.181	119.932	59,031	1.611	0.124	0.614	4.063	59,064	17.635	3.313	16.110	34.253	

(b) 500 largest firms

		Т	'obin's q				Manageri	al owners	hip(m)				Amihud					FHT			Years listed				
Year	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90
2000	500	1.250	0.891	1.078	1.819	500	0.019	0.000	0.001	0.051	500	35.705	8.242	16.903	75.553	500	0.782	0.187	0.438	1.843	500	18.490	5.476	24.255	24.255
2001	500	1.196	0.880	1.051	1.686	500	0.019	0.000	0.001	0.051	500	32.332	6.967	13.862	67.307	500	0.678	0.154	0.367	1.425	500	19.090	5.521	25.169	25.254
2002	500	1.014	0.755	0.945	1.286	500	0.020	0.000	0.001	0.052	500	28.545	5.732	11.820	52.625	500	0.659	0.120	0.312	1.590	500	19.550	5.457	26.007	26.253
2003	500	1.168	0.855	1.058	1.550	500	0.021	0.000	0.001	0.058	500	19.929	3.833	7.104	30.391	500	0.466	0.115	0.273	1.053	500	19.932	5.591	25.202	27.255
2004	500	1.177	0.907	1.090	1.546	500	0.022	0.000	0.001	0.065	500	12.201	2.647	5.146	18.130	500	0.358	0.097	0.250	0.689	500	20.315	5.725	24.494	28.255
2005	500	1.385	0.967	1.242	1.929	500	0.024	0.000	0.001	0.063	500	8.703	2.134	3.898	9.449	500	0.303	0.097	0.227	0.527	500	21.130	6.315	25.661	29.254
2006	500	1.330	0.946	1.217	1.890	500	0.024	0.000	0.001	0.061	500	8.454	2.012	3.669	9.542	500	0.254	0.081	0.201	0.441	500	21.586	6.476	25.381	30.253
2007	500	1.104	0.804	1.012	1.493	500	0.023	0.000	0.001	0.060	500	10.416	2.256	3.749	11.718	500	0.267	0.074	0.214	0.472	500	22.357	6.528	26.319	31.255
2008	500	0.927	0.688	0.877	1.172	500	0.024	0.000	0.001	0.067	500	17.572	3.320	6.226	21.884	500	0.366	0.081	0.263	0.643	500	23.310	7.313	27.873	32.255
2009	500	1.026	0.794	0.953	1.329	500	0.024	0.000	0.001	0.069	500	15.361	2.430	4.597	17.534	500	0.335	0.078	0.213	0.640	500	23.733	7.450	27.496	33.254
2010	500	0.977	0.735	0.915	1.255	500	0.024	0.000	0.001	0.066	500	10.897	2.072	4.128	13.372	500	0.344	0.062	0.191	0.755	500	24.447	7.502	28.214	34.253
2011	500	0.967	0.741	0.917	1.224	500	0.021	0.000	0.001	0.049	500	11.620	2.160	4.294	17.983	500	0.303	0.055	0.184	0.624	500	25.483	8.501	29.455	35.255
2012	500	1.022	0.757	0.943	1.357	500	0.022	0.000	0.001	0.055	500	13.158	2.109	4.125	17.681	500	0.293	0.061	0.166	0.660	500	25.869	8.497	29.133	36.255
2013	500	1.097	0.784	0.997	1.482	500	0.018	0.000	0.001	0.040	500	8.656	2.037	4.327	12.147	500	0.234	0.047	0.153	0.468	500	26.925	9.448	30.301	37.254
2014	500	1.227	0.847	1.066	1.679	500	0.017	0.000	0.001	0.033	500	7.115	1.723	3.361	9.617	500	0.189	0.035	0.136	0.402	500	27.711	10.538	30.787	38.253
2015	500	1.211	0.812	1.022	1.823	500	0.019	0.000	0.001	0.035	500	8.565	1.898	3.948	10.792	500	0.185	0.023	0.117	0.368	500	28.342	10.491	31.578	39.255
2016	500	1.253	0.858	1.082	1.886	500	0.019	0.000	0.001	0.036	500	7.865	1.925	3.629	9.919	500	0.193	0.029	0.130	0.368	500	28.956	10.541	32.287	40.255
2017	500	1.346	0.864	1.115	2.178	500	0.018	0.000	0.001	0.038	500	6.762	1.686	2.983	7.412	500	0.149	0.029	0.121	0.265	500	29.977	11.996	33.073	41.254
Full sample	9,000	1.149	0.806	1.024	1.602	9,000	0.021	0.000	0.001	0.053	9,000	14.659	2.256	4.942	23.045	9,000	0.353	0.061	0.209	0.672	9,000	23.734	7.491	25.254	37.254

Table 1(C). Co	ontinued.
----------------	-----------

(c) Young firms

	Tobin's q					Managerial ownership (m)				Amihud							FHT			Years listed					
Year	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90
2000	1,313	1.346	0.809	1.097	2.135	1,313	0.154	0.002	0.115	0.379	1,313	87.443	16.682	55.527	170.152	1,313	3.573	0.543	2.371	7.976	1,313	4.711	0.780	4.600	9.095
2001	1,348	1.350	0.796	1.100	2.267	1,348	0.159	0.003	0.114	0.404	1,348	80.716	12.709	51.821	171.738	1,348	3.035	0.434	2.127	6.724	1,348	4.498	0.591	4.527	8.287
2002	1,408	1.059	0.619	0.916	1.629	1,408	0.167	0.002	0.124	0.416	1,408	87.315	13.214	51.340	184.780	1,408	2.764	0.347	1.867	6.140	1,408	4.808	1.062	4.747	8.597
2003	1,363	1.304	0.695	1.034	2.224	1,363	0.161	0.002	0.118	0.402	1,363	58.740	7.165	32.449	122.170	1,363	2.040	0.280	1.418	4.378	1,363	5.051	1.235	4.931	8.953
2004	1,354	1.521	0.796	1.155	2.803	1,354	0.159	0.002	0.113	0.396	1,354	33.789	4.265	15.993	72.530	1,354	1.538	0.229	0.964	2.986	1,354	5.038	0.936	4.694	9.284
2005	1,271	1.774	0.916	1.405	3.188	1,271	0.165	0.002	0.118	0.410	1,271	19.244	2.886	8.583	40.750	1,271	1.133	0.214	0.679	2.292	1,271	4.817	1.021	4.684	8.895
2006	1,328	1.579	0.875	1.280	2.787	1,328	0.180	0.002	0.129	0.450	1,328	23.151	2.823	10.419	51.624	1,328	0.991	0.183	0.613	2.077	1,328	4.605	0.813	4.578	8.747
2007	1,308	1.227	0.726	1.029	1.968	1,308	0.189	0.002	0.137	0.468	1,308	35.453	3.712	17.271	87.986	1,308	1.191	0.172	0.666	2.587	1,308	4.629	1.038	4.322	8.490
2008	1,228	1.022	0.585	0.877	1.535	1,228	0.189	0.002	0.140	0.469	1,228	75.621			177.388	1,228	1.867	0.211	0.846	4.786	1,228	5.070	1.766	4.782	8.780
2009	1,066	1.119	0.655	0.932	1.695	1,066	0.190	0.002	0.140	0.464	1,066	75.398			189.824	1,066	1.776	0.165	0.779	4.487	1,066	5.530	2.237	5.344	9.180
2010	924	1.110	0.661	0.942	1.709	924	0.186	0.002	0.137	0.455	924	66.795	4.121	31.672	175.940	924	1.830	0.142	0.656	4.341	924	5.821	2.779	5.789	9.292
2011	800	1.110	0.658	0.940	1.717	800	0.183	0.002	0.120	0.444	800	57.869	4.263	25.762	142.619	800	1.586	0.120	0.598	3.636	800	5.895	2.524	6.052	9.106
2012	718	1.235	0.651	0.992	2.004	718	0.189	0.002	0.123	0.457	718		3.248	17.396	109.947	717	1.165	0.110	0.482	2.660	718	6.035	1.492	6.428	9.043
2013	663	1.432	0.704	1.106	2.513	663	0.173	0.002	0.110	0.439	663	19.824	2.583	8.651	48.272	661	0.757	0.091	0.376	1.491	663	6.232	1.287	7.099	9.311
2014	624	1.702	0.845	1.294	3.340	624	0.184	0.003	0.123	0.453	622	14.670	2.082	6.363	32.009	620	0.593	0.072	0.292	1.251	624	5.886	0.983	7.157	9.270
2015	607	1.802	0.833	1.395	3.301	607	0.194	0.003	0.132	0.465	603	12.675	1.972	5.551	27.453	600	0.447	0.046	0.243	0.857	607	5.219	0.526	5.051	9.369
2016	533	1.962	0.884	1.471	3.884	533	0.211	0.003	0.160	0.496	530	12.375	1.720	5.762	27.867	527	0.688	0.053	0.230	0.963	533	4.575	0.849	3.997	9.380
2017	510	2.217	0.970	1.754	4.513	510	0.216	0.003	0.159	0.522	504	7.793	1.272	3.750	12.959	500	0.675	0.056	0.191	0.684	510	4.003	0.758	3.265	8.805
Full sample	18,366	1.383	0.721	1.079	2.442	18,366	0.177	0.002	0.126	0.438	18,351	50.446	3.564	21.908	123.747	18,336	1.727	0.159	0.799	4.116	18,366	5.065	1.054	5.158	9.051

(d) Mature firms

(4)1	I I ICUCI		,																						
Tobin's q					Managerial ownership (m)				Amihud					FHT					Years listed						
Year	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90	Obs.	Mean	p10	p50	p90
2000	1,836	1.123	0.794	1.020	1.461	1,836	0.035	0.001	0.005	0.109	1,836	83.731	10.912	49.608	194.997	1,835	2.885	0.301	1.329	7.700	1,836	19.646	11.329	24.008	24.255
2001	1,919	1.063	0.753	0.985	1.372	1,919	0.039	0.001	0.006	0.131	1,919	82.710	9.721	47.894	181.950	1,918	2.658	0.259	1.209	6.528	1,919	19.966	11.409	24.159	25.254
2002	1,904	0.873	0.573	0.852	1.138	1,904	0.039	0.001	0.006	0.129	1,904	72.920	8.008	41.498	168.690	1,904	2.483	0.213	1.171	6.157	1,904	20.648	12.164	23.995	26.253
2003	1,915	1.020	0.675	0.954	1.380	1,915	0.042	0.001	0.007	0.137	1,915	51.339	4.675	21.827	125.850	1,915	1.864	0.188	0.893	4.394	1,915	21.006	12.378	22.831	27.255
2004	1,987	1.073	0.744	1.000	1.434	1,987	0.045	0.001	0.007	0.151	1,987	33.382	3.482	13.745	81.773	1,987	1.239	0.162	0.669	2.802	1,987	21.385	11.918	21.999	28.255
2005	2,105	1.235	0.836	1.109	1.759	2,105	0.047	0.001	0.007	0.152	2,105	23.702	2.500	8.248	58.279	2,105	1.020	0.150	0.499	2.322	2,105	21.405	11.368	20.211	29.254
2006	2,154	1.122	0.770	1.021	1.578	2,154	0.048	0.001	0.008	0.157	2,154	33.740	2.747	11.503	77.877	2,154	1.098	0.123	0.442	2.937	2,154	21.804	11.548	20.578	30.253
2007	2,214	0.957	0.640	0.897	1.333	2,214	0.049	0.001	0.009	0.162	2,214	49.632	3.068	16.287	120.377	2,214	1.483	0.123	0.520	4.130	2,214	22.218	11.814	21.402	31.255
2008	2,241	0.820	0.526	0.799	1.078	2,241	0.047	0.001	0.008	0.157	2,241	87.522			215.095	2,241	2.621	0.155	0.768	7.503	2,241	22.827	12.342	22.138	32.255
2009	2,258	0.888	0.576	0.851	1.191	2,258	0.049	0.001	0.009	0.159	2,258	72.428	3.674	23.319	180.961	2,258	2.279	0.131	0.688	6.488	2,258	23.254	12.438	22.286	33.254
2010	2,314	0.869	0.575	0.832	1.159	2,314	0.051	0.001	0.009	0.166	2,313	60.933			153.135	2,313	2.212	0.118	0.724	6.024	2,314	23.633	12.151	22.376	34.253
2011	2,379	0.875	0.588	0.839	1.179	2,379	0.051	0.001	0.011	0.166	2,379	58.051			136.853	2,379	1.876	0.117	0.587	4.988	2,379	23.911	11.978	22.428	35.255
2012	2,437	0.925	0.600	0.863	1.281	2,437	0.051	0.001	0.011	0.163	2,437	48.324			119.194	2,437	1.555	0.109	0.539	3.938	2,437	24.390	12.309	23.264	36.255
2013	2,443	1.011	0.644	0.915	1.445	2,443	0.048	0.001	0.011	0.151	2,443	27.740			69.674	2,443	1.005	0.092	0.423	2.502	2,443	25.074	12.548	23.929	37.254
2014	2,527	1.120	0.700	0.974	1.650	2,527	0.050	0.001	0.012	0.161	2,527	21.946	2.387	8.549	53.027	2,527	0.817	0.083	0.356	2.017	2,527	25.430	12.914	24.323	38.253
2015	2,626	1.103	0.652	0.944	1.685	2,626	0.052	0.001	0.013	0.168	2,626	21.972	2.750	8.632		2,626	0.741	0.071	0.328	1.712	2,626	25.752	12.457	24.498	39.255
2016	2,713	1.164	0.689	0.981	1.829	2,713	0.055	0.001	0.013	0.180	2,713	23.922	2.771	9.502		2,713	0.795	0.079	0.335	2.000	2,713	26.059	12.323	25.076	40.255
2017	2,726	1.294	0.750	1.059	2.141	2,726	0.055	0.001	0.013	0.176	2,726	15.085	2.003	5.800		2,726	0.533	0.070	0.239	1.214	2,726	26.570	12.550	24.973	41.254
Full sample	40,698	1.033	0.651	0.933	1.473	40,698	0.048	0.001	0.009	0.156	40,697	46.486	3.124	15.334	117.917	40,695	1.558	0.114	0.535	4.039	40,698	23.308	12.104	23.118	36.255

Table 2. Determinants of managerial ownership

The table follows HHP (p. 368 Table 4(A)). The specifications reported in the table all model the fraction of managerial ownership (*m*), by regressing the transformed dependent variable LN(m/(1-m)) on the explanatory variables indicated below. Intercept terms and year dummies are included for all the regressions but not reported.

The following are also applied to all tables in the paper. Variable descriptions are given in Appendix A. The sample period is from 2000 to 2017. Coefficients marked with *, ** and *** are statistically significant at the 10%, 5% and 1% levels, respectively. Standard errors robust to both clustering at firm-level and heteroscedasticity are reported in parentheses (except for adjusted FM regressions). For adjusted FM regressions, adjusted Fama-MacBeth standard errors are reported (for the adjustment, see Section 3-1-3). Year fixed effects and/or fixed effects at the industry or firm level are included where indicated, but not reported. We adopt TSE 33 industry classifications for controlling industry fixed effects.

		All firms		500 largest firms	Non-500 largest
	(1)	(2)	(3)	(4)	(5)
LN(S)	0.32 **	0.30 **	0.20	-2.19 *	0.42
	(0.14)	(0.14)	(0.22)	(1.16)	(0.29)
(LN(S))^2	-0.05 ***	-0.05 ***	-0.01	0.07 *	-0.02
	(0.01)	(0.01)	(0.01)	(0.04)	(0.01)
K/S	-0.59 ***	-0.51 ***	-0.05	0.11	-0.04
	(0.06)	(0.06)	(0.04)	(0.40)	(0.04)
(K/S)^2	0.00 ***	0.00 ***	0.00	-0.04	0.00
	(0.00)	(0.00)	(0.00)	(0.08)	(0.00)
SIG MA	0.14 ***	0.13 ***	0.02 **	0.04	0.02 *
	(0.02)	(0.02)	(0.01)	(0.15)	(0.01)
Y/S	-0.02 ***	-0.02 ***	-0.00	1.54 **	-0.00
	(0.00)	(0.00)	(0.00)	(0.66)	(0.00)
RDK	-0.01 **	-0.01 **	-0.00	-0.91	-0.00
	(0.00)	(0.00)	(0.00)	(0.56)	(0.00)
RDUM	-0.79 ***	-0.10	0.06	0.14	0.06
	(0.05)	(0.07)	(0.05)	(0.10)	(0.06)
A/K	0.01 ***	0.01 ***	0.00	0.13	0.00
	(0.00)	(0.00)	(0.00)	(0.21)	(0.00)
ADUM	0.36 ***	0.23 ***	-0.08 ***	-0.03	-0.11 ***
	(0.05)	(0.05)	(0.03)	(0.07)	(0.03)
I/K	-0.01	-0.01 **	-0.01	-0.12	-0.01
	(0.01)	(0.01)	(0.01)	(0.23)	(0.01)
#Obs.	59,011	59,011	59,011	9,000	50,011
Year FE	Yes	Yes	Yes	Yes	Yes
Industry FE	No	Yes	No	No	No
Firm FE	No	No	Yes	Yes	Yes

Table 3. Effects of past stock liquidity on managerial ownership

The table reports estimates of adjusted FM and OLS regressions of managerial ownership (*m*) on measures of past stock liquidity. Managerial ownership (*m*) is regressed against a measure of past liquidity (Amihud or FHT measure) and HHP control variables. *High liquidity years (Amihud)* and *high liquidity years (FHT)* or *low liquidity years (Amihud)* and *high liquidity years (FHT)* or *low liquidity years (Amihud)* and *low liquidity years (FHT)* are the fractions of years during the sample period that a firm spent in the high or low liquidity bracket, where high or low liquidity refers to the top or bottom quartile of the annual liquidity distribution (as in FFST p. 20). The table is comparable to that of FFST (p. 53 Table 6). For other points, see Table 2.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
High liquidity years (Amihud)	0.009	0.010 *						
	(0.01)	(0.00)						
Low liquidity years (Amihud)			-0.013 ***	-0.013 **				
			(0.00)	(0.01)				
High liquidity years (FHT)					0.030 ***	0.031 ***		
					(0.01)	(0.01)		
Low liquidity years (FHT)							-0.035 ***	-0.034 ***
							(0.01)	(0.01)
LN(S)	-0.095 ***	-0.081 ***	-0.098 ***	-0.084 ***	-0.096 ***	-0.082 ***	-0.107 ***	-0.092 ***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
(LN(S))^2	0.003 ***	0.003 ***	0.003 ***	0.003 ***	0.003 ***	0.002 ***	0.004 ***	0.003 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
K/S	-0.036 ***	-0.027 ***	-0.036 ***	-0.026 ***	-0.037 ***	-0.027 ***	-0.037 ***	-0.027 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
(K/S)^2	0.001 ***	0.000 ***	0.001 ***	0.000 ***	0.001 ***	0.000 ***	0.001 ***	0.000 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
SIGMA	0.019 ***	0.018 ***	0.019 ***	0.018 ***	0.020 ***	0.017 ***	0.020 ***	0.017 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Y/S	0.045 ***	0.000	0.045 ***	0.000	0.043 ***	0.000	0.045 ***	0.000
	(0.01)	(0.00)	(0.01)	(0.00)	(0.01)	(0.00)	(0.01)	(0.00)
RDK	0.002	-0.001 **	0.002	-0.001 **	0.002	-0.001 **	0.001	-0.001 **
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
RDUM	-0.015 ***	-0.015 ***	-0.015 ***	-0.016 ***	-0.016 ***	-0.016 ***	-0.017 ***	-0.018 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
A/K	0.005 ***	0.001 ***	0.004 ***	0.001 ***	0.004 ***	0.001 ***	0.004 ***	0.001 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
ADUM	0.011 ***	0.012 ***	0.011 ***	0.013 ***	0.010 ***	0.012 ***	0.011 ***	0.013 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
I/K	-0.000	-0.000	-0.000	-0.000	-0.001	-0.000	-0.001	-0.001
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
#Obs.	59,048	59,048	59,048	59,048	59,031	59,031	59,031	59,031
Estimation approach	FM	OLS	FM	OLS	FM	OLS	FM	OLS
Year FE	No	Yes	No	Yes	No	Yes	No	Yes
Industry FE	Yes							
(Avg.) R-squared	0.26	0.24	0.26	0.24	0.26	0.24	0.26	0.25
Table 4. Large changes in managerial ownership and changes in explanatory variables

(A) Fraction of firm-years with a large change in ownership

The table shows means of three dummy variables that are equal to one if a firm experiences no change, a large drop or a large increase, respectively, in managerial ownership (m), and otherwise equal to zero. As in FS (p. 346), a large drop (increase) is defined as a change in *m* larger than 2.5% in absolute value. The dummy variable *No change* takes one if a firm has a small change in ownership at 2.5% or less in absolute value, and otherwise zero.

	All firms		Young firms		Mature	firms	Difference
	Obs.	Mean	Obs.	Mean	Obs.	Mean	Mean
No change	53,401	0.907	14,983	0.806	38,418	0.946	-0.140 ***
Large drop	53,401	0.074	14,983	0.155	38,418	0.042	0.113 ***
Large increase	53,401	0.020	14,983	0.040	38,418	0.012	0.028 ***

Significant differences for the means between young and mature firms are indicated at the 1% level by ***.

Table 4. Continued.

(B) Decomposition of large ownership changes and changes in explanatory variables

In the spirit of FS (p. 351 Table 3, p. 352 Table 4), the table reports marginal effects of probit regressions of both a) large decreases (columns (1), (7) and (9)) and large increases (columns (4), (8) and (10)) in managerial ownership (*m*) and b) the decomposition of the large decreases (columns (2) and (3)) and increases (columns (5) and (6)) on changes in explanatory variables.

The dependent variable in columns (1), (4) and (7) to (10) is equal to one if *m* decreases (increases) by more than 2.5% in absolute value, and zero otherwise. The decomposition in columns (2) to (3) and columns (5) to (6) is done as in Helwege, Pirinsky and Stulz (2007, p. 1009 Eq. (1)). Specifically, as in FS (pp. 352-353), we set the indicator variable for a large decrease or increase in shares held equal to one if the first term of their Eq. (1) or our Eq. (3) (the numerator change) is more than 2.5% in absolute value, and that in shares outstanding equal to one if the second term (the denominator change) exceeds 2.5% in absolute value (see Section 3-3-1).

The first explanatory variable is the level of *m* lagged by one period. The other explanatory variables are expressed as changes, and all accounting variables are calculated as changes from two fiscal years prior to the end of the previous fiscal year (for variable descriptions, see Appendix A). *Lagged industry-adj. return* and *lagged market return* are those over the previous fiscal year. A financially constrained (unconstrained) indicator variable is equal to one if the firm becomes financially constrained (unconstrained). A no R&D dummy that is equal to one if the firm has missing research and development expenditures for a fiscal year is included in the regressions, but not reported.

Year fixed effects are controlled in the regressions. Standard errors are corrected for clustering at the firm level, but not reported. For other points, see Table 2.

Table 4(B). Continued.

			All firm	S			Youn	g firms	Matu	re firms
		Large drop			Large increase)	Large drop	Large increase	Large drop	Large increase
	A11	Numerator decrease	Denominator increase	A11	Numerator increase	Denominator decrease	A11	A11	A11	A11
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Level of managerial ownership	3.84 ***	3.63 ***	3.16 ***	0.69 ***	0.59 ***	1.20 ***	2.82 ***	-0.31 **	4.78 ***	1.34 ***
Change in managerial ownership	-0.69 ***	-0.63 ***	-0.51	-4.38 ***	-4.38 ***	-2.64 ***	-0.25	-3.39 ***	-0.82 **	-5.40 ***
Change in R&D/assets	0.91	-0.28	2.11	-2.49	-1.61	-4.52 *	0.26	-1.54	2.84	-5.69 **
Change in log (assets)	0.22 ***	0.18 **	0.36 ***	0.03	0.06	0.01	0.25 ***	0.11	0.11	-0.26
Change in capex/assets	-0.00	0.10	-0.54	-0.13	-0.06	0.18	0.04	0.24	-0.04	-0.53
Change in cash flow	-0.05 ***	-0.06 ***	-0.02	-0.00	-0.00	0.00	-0.04 ***	-0.00	0.06	-0.15
Change in PPE/assets	0.37	0.15	0.16	0.31	0.35	0.54	0.57	-0.16	0.01	0.78
Change in leverage	0.58 ***	0.33 *	1.27 ***	0.24	0.30	0.36	0.71 ***	0.22	0.17	0.28
Became financially constrained	0.20 ***	0.14 **	0.25 ***	0.28 ***	0.30 ***	0.32 ***	0.25 ***	0.30 ***	0.13	0.22 **
Became financially unconstrained	-0.06	-0.12 *	0.09	0.08	0.04	0.26 **	0.01	0.14	-0.12	0.05
Change in turnover	4.20 ***	2.80	7.22 ***	-0.12	0.57	2.89	3.58	1.46	4.68 **	-2.41
Change in idiosyncratic volatility	0.02 *	0.01	0.07 ***	0.02	0.02	0.06 **	0.03 *	-0.02	0.01	0.06 ***
Concurrent industry-adj. return	0.06 ***	0.05 ***	0.13 ***	0.02	0.02	0.05 **	0.07 ***	-0.00	0.01	0.05
Concurrent market return	0.24 **	0.18 *	0.48 ***	-0.16	-0.18	-0.33	0.31 **	-0.26	0.21	-0.02
Lagged industry-adj. return	0.06 ***	0.04 **	0.14 ***	0.12 ***	0.12 ***	0.08 ***	0.07 ***	0.09 ***	0.02	0.15 ***
Lagged market return	-0.15	-0.12	-0.10	-0.07	-0.09	-0.15	-0.16	-0.14	-0.11	0.11
Concurrent change in CEO	0.55 ***	0.61 ***	-0.04	0.01	0.01	0.11 *	0.59 ***	0.03	0.56 ***	0.01
Change in analyst coverage	0.02	0.03	0.04	-0.04	-0.03	0.04	0.04	-0.01	0.03	-0.05
#Obs.	48,206	48,206	48,206	48,206	48,206	48,206	12,079	12,079	36,127	36,127
Pseudo R-squared	0.20	0.19	0.25	0.09	0.09	0.12	0.14	0.08	0.19	0.08

Table 5. Determinants of Tobin's q

(A) Adjusted Fama-MacBeth regressions

In the spirit of FFST (p. 48 Table 2 Panel A), this table reports estimates of adjusted FM regressions of Tobin's *q* on managerial ownership and HHP control variables. For other points, see Table 2.

		All firms			500 largest fin	ms		Y oung firms			Mature firms		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
m	0.38 ***		0.06	0.14		0.17	0.27 ***		0.19	-0.15		-0.40	
	(0.12)		(0.33)	(0.11)		(0.17)	(0.04)		(0.26)	(0.14)		(0.36)	
m^2			0.71			-0.06			0.24			0.75	
			(0.45)			(0.35)			(0.50)			(0.61)	
m1		-1.05 ***			-0.64 **			-0.50			-1.05 ***		
		(0.32)			(0.25)			(0.73)			(0.39)		
m2		0.50 ***			0.61 **			0.37 **			0.04		
		(0.18)			(0.30)			(0.15)			(0.12)		
m3		0.59 ***			-0.41			0.35 **			-0.00		
		(0.14)			(0.40)			(0.14)			(0.13)		
LN(S)	-0.53 ***	-0.53 ***	-0.53 ***	0.81 ***	0.82 ***	0.81 ***	-0.76 ***	-0.75 ***	-0.76 ***	-0.19 ***	-0.19 ***	-0.18 ***	
	(0.12)	(0.12)	(0.12)	(0.08)	(0.09)	(0.08)	(0.14)	(0.14)	(0.15)	(0.05)	(0.05)	(0.05)	
(LN(S))^2	0.02 ***	0.02 ***	0.02 ***	-0.03 ***	-0.03 ***	-0.03 ***	0.03 ***	0.03 ***	0.03 ***	0.01 ***	0.01 ***	0.01 ***	
	(0.01)	(0.00)	(0.01)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	
K/S	-0.18 ***	-0.18 ***	-0.18 ***	-0.28 *	-0.29 *	-0.28 *	-0.37 ***	-0.37 ***	-0.37 ***	-0.06	-0.06	-0.06	
	(0.06)	(0.06)	(0.06)	(0.17)	(0.16)	(0.16)	(0.13)	(0.13)	(0.13)	(0.06)	(0.06)	(0.06)	
(K/S)^2	0.02 **	0.02 **	0.02 **	0.03	0.03	0.03	0.06	0.06	0.06	0.01	0.01	0.01	
	(0.01)	(0.01)	(0.01)	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)	(0.01)	(0.01)	(0.01)	
Y/S	0.21 **	0.22 **	0.22 **	5.08 ***	5.09 ***	5.08 ***	0.20 **	0.20 **	0.20 **	1.17 ***	1.18 ***	1.17 ***	
	(0.09)	(0.09)	(0.09)	(0.72)	(0.72)	(0.71)	(0.08)	(0.08)	(0.08)	(0.38)	(0.38)	(0.38)	
RDK	0.05	0.05	0.05	-0.00	-0.01	-0.00	0.03	0.03	0.03	0.12 **	0.12 **	0.12 **	
	(0.03)	(0.03)	(0.03)	(0.09)	(0.09)	(0.09)	(0.03)	(0.03)	(0.03)	(0.06)	(0.06)	(0.06)	
RDUM	-0.00	-0.00	-0.00	-0.05 ***	-0.05 ***	-0.05 ***	0.03	0.03	0.03	-0.02	-0.02	-0.02	
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.03)	(0.03)	(0.03)	(0.02)	(0.02)	(0.02)	
A/K	0.02 ***	0.02 ***	0.02 ***	0.31	0.30	0.31	0.02 ***	0.02 ***	0.02 ***	0.07	0.07	0.07	
	(0.01)	(0.01)	(0.01)	(0.20)	(0.21)	(0.21)	(0.00)	(0.00)	(0.00)	(0.06)	(0.06)	(0.06)	
ADUM	0.01	0.02	0.01	-0.00	0.00	-0.00	0.09	0.09	0.09	0.01	0.01	0.01	
	(0.03)	(0.02)	(0.02)	(0.06)	(0.06)	(0.06)	(0.07)	(0.06)	(0.06)	(0.01)	(0.01)	(0.01)	
l/K	0.03 ***	0.03 ***	0.03 ***	0.34 ***	0.33 ***	0.34 ***	0.03 **	0.03 **	0.03 **	0.18 *	0.18 *	0.18 *	
	(0.01)	(0.01)	(0.01)	(0.08)	(0.08)	(0.08)	(0.02)	(0.02)	(0.02)	(0.11)	(0.11)	(0.11)	
SIG MA	0.25 ***	0.24 ***	0.24 ***	0.63 ***	0.63 ***	0.62 **	0.20 ***	0.20 ***	0.20 ***	1.43 ***	1.42 ***	1.43 ***	
	(0.04)	(0.04)	(0.04)	(0.24)	(0.25)	(0.24)	(0.04)	(0.04)	(0.04)	(0.38)	(0.38)	(0.38)	
#Obs.	59,064	59,064	59,064	9,000	9,000	9,000	18,366	18,366	18,366	40,698	40,698	40,698	
Avg. R-squared	0.24	0.24	0.24	0.51	0.51	0.51	0.26	0.26	0.26	0.22	0.23	0.22	
Year FE	No	No	No	No	No	No	No	No	No	No	No	No	
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

Table 5. Continued.

(B) OLS regressions

In the spirit of FFST (p. 49 Table 2 Panel B), this table reports results of OLS regressions of Tobin's *q* on managerial ownership and HHP control variables. For other points, see Table 2.

		All firms			500 largest fin	ms		Y oung firms			Mature firms		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	
m	0.45 ***		0.09	0.21		0.30	0.38 ***		0.20	-0.02		-0.24	
	(0.05)		(0.12)	(0.21)		(0.47)	(0.07)		(0.16)	(0.08)		(0.16)	
m^2			0.76 ***			-0.25			0.34			0.64 *	
			(0.23)			(0.96)			(0.28)			(0.37)	
m1		-1.01 ***			-0.78			-0.91			-0.83 **		
		(0.37)			(0.98)			(0.66)			(0.39)		
m2		0.54 ***			0.84			0.45 **			0.14		
		(0.13)			(0.74)			(0.19)			(0.15)		
m3		0.68 ***			-0.47			0.48 ***			0.13		
		(0.13)			(0.73)			(0.14)			(0.21)		
LN(S)	-0.51 ***	-0.50 ***	-0.51 ***	0.87 ***	0.88 ***	0.87 ***	-0.65 ***	-0.64 ***	-0.64 ***	-0.20 ***	-0.20 ***	-0.20 ***	
	(0.04)	(0.04)	(0.04)	(0.19)	(0.20)	(0.19)	(0.07)	(0.07)	(0.07)	(0.05)	(0.05)	(0.05)	
(LN(S))^2	0.02 ***	0.02 ***	0.02 ***	-0.03 ***	-0.03 ***	-0.03 ***	0.03 ***	0.03 ***	0.03 ***	0.01 ***	0.01 ***	0.01 ***	
	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	
K/S	-0.08 ***	-0.08 ***	-0.08 ***	-0.25 ***	-0.25 ***	-0.25 ***	-0.10 ***	-0.10 ***	-0.10 ***	-0.08 ***	-0.09 ***	-0.08 ***	
	(0.02)	(0.02)	(0.02)	(0.08)	(0.07)	(0.08)	(0.03)	(0.03)	(0.03)	(0.02)	(0.02)	(0.02)	
(K/S)^2	0.00 ***	0.00 ***	0.00 ***	0.03	0.03	0.03	0.00 ***	0.00 ***	0.00 ***	0.01 ***	0.01 ***	0.01 ***	
	(0.00)	(0.00)	(0.00)	(0.02)	(0.02)	(0.02)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	
Y/S	-0.00 **	-0.00 **	-0.00 **	4.72 ***	4.72 ***	4.72 ***	-0.00	-0.00	-0.00	0.23	0.23	0.23	
	(0.00)	(0.00)	(0.00)	(0.33)	(0.32)	(0.32)	(0.00)	(0.00)	(0.00)	(0.17)	(0.17)	(0.17)	
RDK	0.01 ***	0.01 ***	0.01 ***	0.07	0.06	0.07	0.00 **	** 00.0	0.00 **	0.05 ***	0.05 ***	0.05 ***	
	(0.00)	(0.00)	(0.00)	(0.12)	(0.12)	(0.12)	(0.00)	(0.00)	(0.00)	(0.01)	(0.02)	(0.01)	
RDUM	0.00	0.00	0.00	-0.05	-0.05	-0.05	0.02	0.02	0.02	-0.01	-0.01	-0.01	
	(0.02)	(0.02)	(0.02)	(0.04)	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)	(0.02)	(0.02)	(0.02)	
A/K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02 ***	0.02 ***	0.02 ***	
	(0.00)	(0.00)	(0.00)	(0.06)	(0.05)	(0.06)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	
ADUM	0.02	0.02	0.02	0.01	0.01	0.01	0.06 ***	0.06 ***	0.06 ***	0.01	0.01	0.01	
	(0.01)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	
I/K	0.02 ***	0.02 ***	0.02 ***	0.35 ***	0.35 ***	0.35 ***	0.02 ***	0.02 ***	0.02 ***	0.01 *	0.01 *	0.01 *	
	(0.00)	(0.00)	(0.00)	(0.09)	(0.09)	(0.09)	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)	
SIG MA	0.18 ***	0.18 ***	0.18 ***	0.41 ***	0.42 ***	0.41 **	0.14 ***	0.14 ***	0.14 ***	1.12 ***	1.11 ***	1.12 ***	
	(0.02)	(0.02)	(0.02)	(0.16)	(0.16)	(0.16)	(0.01)	(0.01)	(0.01)	(0.10)	(0.10)	(0.10)	
#Obs.	59,064	59,064	59,064	9,000	9,000	9,000	18,366	18,366	18,366	40,698	40,698	40,698	
R-squared	0.25	0.25	0.25	0.47	0.47	0.47	0.27	0.27	0.27	0.22	0.22	0.22	
Year FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

Table 5. Continued.

(C) Panel regressions

As in HHP (pp. 374-375 Table 5(A), pp. 376-377 Table 5(B)), the specifications reported in these tables all model Tobin's q as a function of the explanatory variables indicated below. In the left table (Table 5(C)(a)), the influence of m enters as a quadratic function, whereas spline specifications are adopted in the right table (Table 5(C)(b)). For other points, see Table 2.

	(1)	(2)	(3)		(1)	(2)	(3)
n	0.38 ***	0.09	-0.13	m1	-1.01 ***	-1.01 ***	-0.28
	(0.12)	(0.12)	(0.16)		(0.39)	(0.37)	(0.42)
<i>n^2</i>	0.45 *	0.76 ***	0.41	<i>m2</i>	0.84 ***	0.54 ***	-0.01
	(0.24)	(0.23)	(0.30)		(0.14)	(0.13)	(0.13)
LN(S)	-0.63 ***	-0.51 ***	-0.47 ***		0.66 ***	0.68 ***	0.23
	(0.04)	(0.04)	(0.10)		(0.13)	(0.13)	(0.14)
(LN(S))^2	0.03 ***	0.02 ***	0.02 ***	LN(S)	-0.63 ***	-0.50 ***	-0.47 ***
	(0.00)	(0.00)	(0.00)		(0.04)	(0.04)	(0.10)
K/S	-0.08 ***	-0.08 ***	-0.11 ***	(LN(S))^2	0.03 ***	0.02 ***	0.02 ***
	(0.02)	(0.02)	(0.02)		(0.00)	(0.00)	(0.00)
(K/S)^2	0.00 ***	0.00 ***	0.00 ***	K/S	-0.09 ***	-0.08 ***	-0.11 ***
	(0.00)	(0.00)	(0.00)		(0.02)	(0.02)	(0.02)
SIG MA	0.19 ***	0.18 ***	0.13 ***	(K/S)^2	0.00 ***	0.00 ***	0.00 ***
	(0.02)	(0.02)	(0.02)	((0.00)	(0.00)	(0.00)
Y/S	-0.00	-0.00 **	-0.01 **	SIG MA	0.19 ***	0.18 ***	0.13 ***
	(0.00)	(0.00)	(0.00)		(0.02)	(0.02)	(0.02)
RDK	0.01 ***	0.01 ***	0.00	Y/S	-0.00 *	-0.00 **	-0.01 **
	(0.00)	(0.00)	(0.00)		(0.00)	(0.00)	(0.00)
RDUM	-0.05 ***	0.00	-0.03	RDK	0.01 ***	0.01 ***	0.00
	(0.01)	(0.02)	(0.02)		(0.00)	(0.00)	(0.00)
4/K	0.00	0.00	0.00	RDUM	-0.06 ***	0.00	-0.03
	(0.00)	(0.00)	(0.00)		(0.01)	(0.02)	(0.02)
ADUM	0.05 ***	0.02	-0.01	A/K	0.00	0.00	0.00
	(0.01)	(0.01)	(0.01)		(0.00)	(0.00)	(0.00)
I/K	0.03 ***	0.02 ***	0.00	ADUM	0.05 ***	0.02	-0.01
	(0.01)	(0.00)	(0.00)		(0.01)	(0.01)	(0.01)
#Obs.	59,064	59,064	59,064		0.03 ***	0.02 ***	0.00
Year FE	Yes	Yes	Yes		(0.01)	(0.00)	(0.00)
Industry FE	No	Yes	No	#Obs.	59,064	59,064	59,064
Firm FE	No	No	Yes	Year FE	Yes	Yes	Yes
				Industry FE	No	Yes	No
				Firm FE	No	No	Yes

Table 5. Continued.

(D) OLS regressions: additional robustness tests

In the spirit of FFST (p. 50 Table 3), this table reports estimates of OLS regressions of Tobin's q on managerial ownership and HHP control variables in spline specifications. Column (1) reproduces the result provided in column (2) in Table 5(B). In column (2), year and industry fixed effects are replaced by industry x year fixed effects. The results of a median regression are shown in column (3), and standard errors robust to clustering at firm-level are reported in parentheses. The dependent variable is transformed into the natural logarithm of Tobin's q in column (4), and into -(1/q) in column (5) (for the transformation, see Section 4-3). For other points, see Table 2.

		Tobin's q		LN(Tobin's q)	-(1/q)
	(1)	(2)	(3)	(4)	(5)
m1	-1.01 ***	-1.04 ***	-1.03 ***	-0.94 ***	-0.99 ***
	(0.37)	(0.37)	(0.21)	(0.27)	(0.28)
m2	0.54 ***	0.54 ***	0.36 ***	0.45 ***	0.46 ***
	(0.13)	(0.13)	(0.08)	(0.09)	(0.09)
m3	0.68 ***	0.68 ***	0.37 ***	0.40 ***	0.31 ***
	(0.13)	(0.13)	(0.08)	(0.07)	(0.07)
LN(S)	-0.50 ***	-0.51 ***	-0.19 ***	-0.28 ***	-0.15 ***
	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)
(LN(S))^2	0.02 ***	0.02 ***	0.01 ***	0.01 ***	0.01 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
K/S	-0.08 ***	-0.08 ***	-0.02 **	-0.05 ***	-0.04 ***
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)
(K/S)^2	0.00 ***	0.00 ***	0.00 ***	0.00 ***	0.00 ***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Y/S	-0.00 **	-0.00 **	-0.00 ***	-0.00	-0.00
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
RDK	0.01 ***	0.01 ***	0.02	0.00 ***	0.00 *
	(0.00)	(0.00)	(0.02)	(0.00)	(0.00)
RDUM	0.00	0.00	-0.00	-0.00	-0.01
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)
A/K	0.00	0.00	0.01 ***	0.00	0.00 *
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
ADUM	0.02	0.02	-0.01	0.00	-0.01
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
<i>I/K</i>	0.02 ***	0.02 ***	0.04 ***	0.01 ***	0.01 **
	(0.00)	(0.00)	(0.02)	(0.00)	(0.00)
SIGMA	0.18 ***	0.18 ***	0.29 ***	0.10 ***	0.07 ***
	(0.02)	(0.02)	(0.06)	(0.01)	(0.01)
#Obs.	59,064	59,064	59,064	59,064	59,064
R-squared	0.25	0.27	0.20	0.27	0.18
Year FE	Yes	No	Yes	Yes	Yes
Industry FE	Yes	No	Yes	Yes	Yes
Industry x Year FE	No	Yes	No	No	No

Table 6. Managerial ownership and Tobin's q conditioning on past liquidity

This table reports estimates of adjusted FM and OLS regressions of Tobin's q on managerial ownership and HHP control variables conditioning on liquidity history. "High liquidity" or "low liquidity" in the table specifies the years during the sample period that a firm spent in the high or low liquidity bracket, which means the top or bottom quartile of the annual liquidity distribution. This table is comparable to that of FFST (p. 51 Table 4). For other points, see Table 2.

		Fama-MacB	eth regression	s	OLS regressions				
	Hig	h liquidity	Lov	v liquidity	High	n liquidity		/ liquidity	
	Amihud	FHT	Amihud	FHT	Amihud	FHT	Amihud	FHT	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
m	0.73 **	0.55	-0.39 **	-0.67 ***	1.06 ***	0.44	-0.36 ***	-0.78 ***	
	(0.36)	(0.40)	(0.17)	(0.12)	(0.28)	(0.28)	(0.11)	(0.14)	
<i>m</i> ^2	0.24	-0.11	0.86 ***	1.40 ***	-0.16	0.97	0.82 ***	1.70 ***	
	(0.78)	(0.79)	(0.31)	(0.27)	(0.53)	(0.61)	(0.20)	(0.32)	
LN(S)	-0.61 ***	-0.64 ***	-0.62 ***	-0.93 ***	-0.59 ***	-0.68 ***	-0.60 ***	-0.95 ***	
	(0.10)	(0.09)	(0.10)	(0.15)	(0.05)	(0.07)	(0.08)	(0.09)	
(LN(S))^2	0.02 ***	0.03 ***	0.03 ***	0.04 ***	0.02 ***	0.03 ***	0.03 ***	0.05 ***	
	(0.00)	(0.00)	(0.00)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	
K/S	-0.24 ***	-0.18 ***	-0.14 ***	-0.20 ***	-0.09 ***	-0.06 ***	-0.11 ***	-0.16 ***	
	(0.09)	(0.03)	(0.03)	(0.06)	(0.02)	(0.02)	(0.03)	(0.02)	
(K/S)^2	0.03	0.02 ***	0.02 ***	0.02 ***	0.00 ***	0.00 **	0.01 ***	0.01 ***	
	(0.02)	(0.01)	(0.01)	(0.01)	(0.00)	(0.00)	(0.00)	(0.00)	
Y/S	0.53 ***	1.43 ***	0.82 ***	-0.04	-0.00 *	0.03	0.28	0.01 ***	
	(0.15)	(0.32)	(0.25)	(0.17)	(0.00)	(0.03)	(0.17)	(0.00)	
RDK	0.07 **	0.14 *	0.02	0.00	0.01 ***	0.01 ***	0.01	0.01	
	(0.03)	(0.08)	(0.07)	(0.02)	(0.00)	(0.00)	(0.02)	(0.01)	
RDUM	0.07 ***	-0.06 *	-0.05 ***	-0.02	0.05	-0.04	-0.05 **	-0.03	
	(0.03)	(0.03)	(0.02)	(0.02)	(0.04)	(0.03)	(0.02)	(0.02)	
A/K	0.03 **	0.10 **	0.07	0.05 *	0.02 ***	0.00	0.01 ***	0.02 ***	
	(0.01)	(0.05)	(0.07)	(0.03)	(0.00)	(0.00)	(0.00)	(0.01)	
ADUM	0.08 *	0.03	-0.01	-0.02 *	0.07 ***	0.05 **	-0.01	-0.02 *	
	(0.04)	(0.03)	(0.01)	(0.01)	(0.02)	(0.02)	(0.01)	(0.01)	
<i>I/K</i>	0.06 ***	0.17 **	0.08 **	0.05	0.01 **	0.05 ***	0.01	0.01 *	
	(0.02)	(0.07)	(0.03)	(0.03)	(0.01)	(0.02)	(0.01)	(0.01)	
SIGMA	0.08 ***	0.11 ***	0.99 ***	0.52 ***	0.07 ***	0.08 ***	0.72 ***	0.38 ***	
	(0.02)	(0.02)	(0.31)	(0.13)	(0.01)	(0.01)	(0.10)	(0.04)	
#Obs.	14,755	14,752	14,773	14,770	14,755	14,752	14,773	14,770	
(Avg.) R-squared	0.36	0.35	0.29	0.39	0.36	0.29	0.23	0.34	
Year FE	No	No	No	No	Yes	Yes	Yes	Yes	
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

Table 7. The effect of ownership change on Tobin's q

In the spirit of FFST (p. 52 Table 5), this table reports estimates of OLS regressions of Tobin's q on the ownership change and the HHP control variables. The explanatory variable *ownership change* is defined as the difference between initial m (first observation for a firm) and present m lagged by one period. "Post-IPO" refers to the subset of firms that experience an IPO during the sample period. For other points, see Table 2.

		A11		Post-IPO
	All firms	Y oung firms	Mature firms	All firms
	(1)	(2)	(3)	(4)
Ownership change	0.31 ***	0.19 **	0.51 ***	0.19 **
	(0.07)	(0.09)	(0.08)	(0.09)
LN(S)	-0.32 ***	-0.37 ***	-0.16 ***	-0.35 ***
	(0.04)	(0.07)	(0.04)	(0.07)
(LN(S))^2	0.02 ***	0.02 ***	0.01 ***	0.02 ***
	(0.00)	(0.00)	(0.00)	(0.00)
K/S	-0.05 ***	-0.08 ***	-0.07 ***	-0.07 ***
	(0.02)	(0.02)	(0.02)	(0.02)
(K/S)^2	0.00 ***	0.00 ***	0.01 ***	0.00 ***
	(0.00)	(0.00)	(0.00)	(0.00)
Y/S	0.03 **	0.02 ***	0.25	0.02 ***
	(0.01)	(0.01)	(0.18)	(0.01)
RDK	0.01 *	0.00	0.05 ***	0.00
	(0.01)	(0.01)	(0.02)	(0.01)
RDUM	-0.00	0.02	-0.01	0.04
	(0.02)	(0.03)	(0.02)	(0.03)
A/K	0.00 *	0.00	0.02 **	0.00
	(0.00)	(0.00)	(0.01)	(0.00)
ADUM	0.01	0.05 **	0.00	0.08 ***
	(0.01)	(0.02)	(0.01)	(0.03)
I/K	0.02 ***	0.02 ***	0.01 *	0.01 ***
	(0.00)	(0.00)	(0.01)	(0.00)
SIGMA	1.40 ***	1.73 ***	1.11 ***	2.08 ***
	(0.09)	(0.11)	(0.11)	(0.14)
#Obs.	53,401	14,983	38,418	13,962
R-squared	0.23	0.26	0.22	0.27
Year FE	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes

Figure 1. Ownership structure following an IPO

Following Helwege, Pirinsky and Stulz (2007, p. 1007 Figure 3), this figure shows the distribution of changes in *m* (current fraction minus initial fraction of managerial ownership) in the years after an IPO. We exclude all firms that were widely held at the end of the first year following an IPO (*m* less than 10%). The initial sample is all firms in our paper that went public during the sample period. WH10 or WH20 is the percentage of firms in which *m* is less than 10% or 20%, respectively.

Figure 2. The relation between managerial ownership and Tobin's q

(A) Adjusted Fama-MacBeth regressions

The figures delineate the relation between managerial ownership and Tobin's q as implied by the estimates reported in our paper. The linear specification (expressed by the black line), the quadratic specification (the blue line) and the spline specification (the red line) in Figure 2(A)(a) correspond to columns (1), (3) and (2) in Table 5(A), respectively, and those in the Figure 2(A)(b) are based on columns (4), (6) and (5) in the same table, respectively. Similarly, those in Figure 2(A)(c) are founded on columns (7), (9) and (8) in the same table, respectively, and those in Figure 2(A)(d) are grounded on columns (10), (12) and (11) in the same table, respectively. Following MSV (p. 301 Figure 1), the intercepts conform to the mean values reported in Table 1(B). The figures are comparable to those presented graphically in the literature (MSV p. 301 Figure 1; FFST pp. 34-35 Figures 2 and 3).

Figure 2. Continued.

(B) Median regressions: robustness

The figures correspond to Figure 2(A), but the coefficients of ownership terms are estimated by unreported median regressions as a robustness test. The results expressed in spline specifications (the red line) in Figure 2(B)(a) are the same as those reported in column (3) in Table 5(D).

(b) 500 largest firms

(a) All firms

Managerial ownership